Project description:Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway. For microarray screening, Invitrogen Protoarray v4.0 protein microarrays were used. Human NEMO expressed as a C-terminal GST fusion was purified from E. coli lysates and labelled with biotin. NEMO or biotinylated GST were applied to the microarrays and binding partners detected using streptavidin-Alexa Fluor 647. Significant interactors on both arrays were detected using Invitrogen Protoarray Prospector software and a Z-score cutoff of 3.0. Following subtraction of interactors present on the GST control array, a final set of significant NEMO interactors was derived. Full experimental details are supplied in Fenner, B. J., Scannell, M. & Prehn, J. H. M. (2010). Expanding the substantial interactome of NEMO using protein microarrays. PLoS ONE (in press).
Project description:This study describes the epigenetic profiling of the novel interactors of H3K4me3, H3K36me3 or H3K9me3. The interactors were ChIP-Seq profiled by their GFP tag in stably transfected HeLa (Kyoto) cells. The interactors include GATAD1, Sgf29, BAP18, TRRAP, PHF8, N-PAC and LRWD1 (including replicates), as well as an GFP ChIP-Seq profile on non-transfected HeLa cells (negative control). Also included are the profiles of the histone modifications themselves (H3K4me3, H3K27me3, H3K9me3, H3K36me3, H3K9/14Ac and H3K79me3) ChIP-Seq profiling of 8 proteins by their GFP tag in stably transfected cells HeLa (Kyoto) cells, 6 replicas, as well as ChIP-Seq profiling of 6 histone modifications in wt HeLa (Kyoto) cells
Project description:Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway.
Project description:This study describes the epigenetic profiling of the novel interactors of H3K4me3, H3K36me3 or H3K9me3. The interactors were ChIP-Seq profiled by their GFP tag in stably transfected HeLa (Kyoto) cells. The interactors include GATAD1, Sgf29, BAP18, TRRAP, PHF8, N-PAC and LRWD1 (including replicates), as well as an GFP ChIP-Seq profile on non-transfected HeLa cells (negative control). Also included are the profiles of the histone modifications themselves (H3K4me3, H3K27me3, H3K9me3, H3K36me3, H3K9/14Ac and H3K79me3)
Project description:MATR3 CLIP-seq analysis on embryonal (E15) murine hearts was performed to identify the protein RNA-interactors during murine cardiac development and to characterize the differential binding of the protein in conditon of KO of the lncRNA Charme.
Project description:We used proximity dependent biotin identification (BioID) method to determine cell cycle specific interaction partners of PCDH7. HeLa S3 cells were synchronized to interphase and mitosis using double tymidine block and double thymidine block followed by S-Trityl-L-cysteine (STC) treatment respectively. Candidate interactors were isolated using streptavidin affinity purification and identified using LC-MS/MS analysis.