Project description:We employed isobaric labeled peptides to do bottom-up proteomics to quantify both non-enriched total peptides and enriched phospho-peptides obtained from hearts of control mice expressing wild-type cardiac troponin I and transgenic mice expressing the truncated N-terminal cardiac troponin I.
Project description:Skeletal muscle is a highly structured and differentiated tissue responsible for voluntary movement and metabolic regulation. Muscles however, are heterogeneous and depending on their location, speed of contraction, fatiguability and function, can be broadly subdivided into fast and slow twitch as well as subspecialized muscles, with each group expressing common as well as specific proteins. Congenital myopathies are a group of non-inflammatory non-dystrophic muscle diseases caused by mutations in a number of genes, leading to a weak muscle phenotype. In most cases specific muscles types are affected, with preferential involvement of fast twitch muscles as well as extraocular and facial muscles. The aim of this study is to compare the proteome of three groups of muscles from wild type and transgenic mice carrying compound heterozygous mutations in Ryr1 identified in a patient with a severe congenital myopathy. Qualitative proteomic analysis was performed by comparing the relative fold change of proteins in fast twitch and slow twitch muscles. Subsequently we compared the proteome of different muscles in wild type and Ryr1 mutant mice. Finally, we applied a quantitative analysis to determine the stoichiometry of the main protein components involved in excitation contraction coupling and calcium regulation. Our results show that recessive Ryr1 mutations do not only cause a change in RyR1 protein content in skeletal muscle, but they are accompanied by profound changes in protein expression in the different muscle types and that the latter effect may be responsible in part, for the weak muscle phenotype observed in patients.
Project description:Hypertrophic and dilated cardiomyopathies (HCM and DCM, respectively) are inherited disorders that may be caused by mutations to the same sarcomeric protein but have completely different clinical phenotypes. The precise mechanisms by which point mutations within the same gene bring about phenotypic diversity remain unclear. Our objective has been to develop a mechanistic explanation of diverging phenotypes in two TPM1 mutations, E62Q (HCM) and E54K (DCM). Drawing on data from the literature and novel experiments with stem cell-derived cardiomyocytes expressing the TPM1 mutations of interest, we constructed computational simulations that provide plausible explanations of the distinct muscle contractility caused by each variant. In E62Q, increased calcium sensitivity and hypercontractility was explained most accurately by a reduction in effective molecular stiffness of tropomyosin and alterations in its interactions with the actin thin filament that favor the ‘closed’ regulatory state. By contrast, the E54K mutation appears to act via long-range allosteric interactions to increase the association rate of the C-terminal troponin I mobile domain to tropomyosin/actin. These mutation-linked molecular events produce diverging alterations in gene expression that can be observed in human engineered heart tissues. Modulators of myosin activity confirm our proposed mechanisms by rescuing normal contractile behavior in accordance with predictions.
Project description:Cancer is considered as a disease of a specific organ, but its effects are felt throughout the body. The systemic effects of cancer can lead to weakness in muscles and heart, which hastens cancer-associated death. miR-486 is a myogenic microRNA and its reduced expression in skeletal muscle is observed in muscular dystrophy. Muscle-specific transgenic expression of miR-486 using muscle creatine kinase promoter (MCK-miR-486) partially rescues skeletal muscle defects in muscular dystrophy animal models. We had previously demonstrated reduced circulating and skeletal muscle levels of miR-486 in several cancer types and lower miR-486 levels correlated with skeletal muscle defects and functional limitations in mammary tumor models. Therefore, skeletal muscle defects induced by cancer could resemble defects observed in various dystrophies, which could be reversed through skeletal muscle expression of miR-486. We performed functional limitations studies and biochemical analysis of skeletal muscles of MMTV-Neu transgenic mice that mimic HER2+ breast cancer and MMTV-PyMT transgenic mice that mimic luminal subtype B breast cancer and these mice crossed to MCK-miR-486 transgenic mice. miR-486 significantly prevented tumor-induced reduction in muscle contraction force, grip strength, and rotarod performance in MMTV-Neu, but not in MMTV-PyMT mice. In MMTV-Neu model, miR-486 reversed several of the cancer-induced changes in skeletal muscle including loss of p53, phospho-AKT, and phospho-laminin alpha 2 (LAMA2) and gain of phosphorylation of the pre-mRNA processing factor hnRNPA0 and the splicing factor SRSF10. LAMA2 is a part of the dystrophin-associated glycoprotein complex, and its loss-of-function mutation is associated with congenital muscular dystrophy. Thus, similar to muscular dystrophy, miR-486 has the potential to reverse skeletal muscle defects and cancer burden in select cancer types.
Project description:RNA Sequencing of skeletal muscle and heart of mice with distinct mitochondrial mutations revealed a differential transcriptomic response to endurance exercise training and altered determinants of exercise capacity and response.
Project description:To identify and analyze mtDNA mutation-responsive genes, a comparison of gastrocnemius muscle tissues from WT (control) and D257A mice was conducted. We examined changes in gene expression in the muscle associated with mtDNA mutations.
Project description:To identify and analyze mtDNA mutation-responsive genes, a comparison of gastrocnemius muscle tissues from WT (control) and D257A mice was conducted. We examined changes in gene expression in the muscle associated with mtDNA mutations. 1) Types of experiments: a) Effect of mitochondrial DNA (mtDNA) mutations b) Effect of aging c) WT (13 month-old Polg+/+ mice) vs. D257A (13 month-old PolgD257A/D257A) mice 2) Experimental factors: a) Type of gene: PolgD257A/D257A b) Time (age) 3) Number of hybridizations in the study: ~10 4) A common reference RNA was not used. 5) Quality control measures were not used. No replicates were done. Dye swap was not used.
Project description:Myosine heavy chain I was overexpressed in mouse skeletal muscle. The transgenic mice, as well as the wild type mice, were endurance trained on treadmill for 5 days/week over 8 weeks at 80% peak aerobic capacity in comparison with untrained mice. The gene expression profiles of the skeletal muscles from wild-type trained (WTT) and untrained (WTUT), and transgenic trained (TGT) and untrained (TGUT) were measured using Affymetrix Mouse430A 2.0 GeneChips. Keywords: genetic modification
Project description:Exercise is a fundamental component of human health that is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of endurance exercise on human health are well established, the molecular mechanisms responsible for these observations remain unclear. Endurance exercise reduces the accumulation of mitochondrial DNA (mtDNA) mutations, alleviates multisystem pathology, and increases the lifespan of the mtDNA mutator mouse model of aging, in which the proof-reading capacity of mitochondrial polymerase gamma (POLG1) is deficient. Clearly, exercise recruited a POLG1-independent mtDNA repair pathway to induce these adaptations, a novel finding as POLG1 is canonically considered to be the sole mtDNA repair enzyme. Here we investigate the identity of this pathway, and show that endurance exercise prevents mitochondrial oxidative damage, attenuates telomere erosion, and mitigates cellular senescence and apoptosis in mtDNA mutator mice. Unexpectedly, we observe translocation of tumour suppressor protein p53 to mitochondria in response to endurance exercise that facilitates mtDNA mutation repair. Indeed, endurance exercise failed to prevent mtDNA mutations, induce mitochondrial biogenesis, preserve mitochondrial morphology, reverse sarcopenia, and mitigate premature mortality in mtDNA mutator mice with muscle-specific deletion of p53. Our data establish an exciting new role for p53 in exercise-mediated maintenance of the mtDNA genome, and presents mitochondrially-targeted p53 as a novel therapeutic modality for aging-associated diseases of mitochondrial etiology. Microarray analysis of gene expression from skeletal muscle (quadriceps femoris) from Mus musculus. N=23 samples per treatment were analysed for whole transcriptiome gene expression profile using NimbleGen Arrays. The treatment groups included wild-type C57Bl/6J mice as the control group, then two treatment groups which both contained homozygous knock-in mtDNA mutator mice (PolG; PolgAD257A/D257A). Once group of these heterozygous knock out mice received regular endurance exercise sessions while the other group remained sedentraty for 6 months. The control group specimens were wild-type litter mates to the transgenic knockout mice.