Project description:We found that auxin stimulates gene expression of DWF4, which encodes a rate-dertermining step in brassinosteroid biosynthesis pathways. This increased gene expressioin subsequently led to elevation of the biosynthetic flux in Arabidopsis roots. To determine the list of genes that are regulated by auxin-synthesizing brassinosteroids, we challenged Arabidopsis seedlings with either auxin only or auxin plus brassinosteroid biosynthetic inhibitor brassinazole. Keywords: Hormone treatment
Project description:The goal of this study is to clarify the function of ARF7 in the pathway of auxin inducing lateral root development. We isolated total RNA from the roots of 8-day-old Col-0 and arf7 seedlings. New genes act downstream of ARF7 after responding to auxin treatment, during the lateral root formation, are discovered.
Project description:We found that auxin stimulates gene expression of DWF4, which encodes a rate-dertermining step in brassinosteroid biosynthesis pathways. This increased gene expressioin subsequently led to elevation of the biosynthetic flux in Arabidopsis roots. To determine the list of genes that are regulated by auxin-synthesizing brassinosteroids, we challenged Arabidopsis seedlings with either auxin only or auxin plus brassinosteroid biosynthetic inhibitor brassinazole. Keywords: Hormone treatment Arabidopsis seedlings (Columbia ecotype) were grown for 10 d on 1× MS agar-solidified media under long-day conditions (16:8, white light and dark cycle). The seedlings were then transferred to 2 different liquid media containing either 10–7 M 2,4-D or 10–7 M 2,4-D plus 10–6 M brassinazole. After 8 h of treatment, the seedlings were blotted with paper towels to remove excess media and subject to total RNA isolation. Total RNAs isolated from each batch were prepared from 3 replicate seedlings using an RNeasy plant mini kit (Qiagen, Germany).
Project description:Analysis of brassinosteroid (BR) and auxin effects on gene expression in Arabidopsis roots. Our genomic results indicate that BR and auxin induce largely opposite gene expression responses in primary roots. RNA-Seq for 7-day-old Arabidopsis Col-0, dwf4, bri1-116, and bri1-116;bzr1-1D roots grown on regular medium and treated with brassinolide, auxin or mock solution for 4 hr.
Project description:The goal of this study is to clarify the function of ERF13 in the pathway of auxin inducing lateral root development. We isolated total RNA from the roots of 9-day-old WT, 35S:ERF13:MYC and erf3-3 seedlings. New genes act downstream of ERF13 during the lateral root formation are discovered.
Project description:Reduced glutathione (GSH) is required for cell cycle initiation and auxin-regulated root meristem development. Transcriptome profiling of the roots and shoots of the root meristemless 1 (rml1) mutant, which has about 3% of the wild type GSH, revealed a divergent auxin and strigolactone response linked to the arrest of the cell cycle. Plants of the rml1 mutant and Columbia-0 ecotype were harvested and separated into roots and shoots, then RNA extraction and Affymetrix Agronomics Tiling Array were performed.
Project description:Analysis of brassinosteroid (BR) and auxin effects on gene expression in Arabidopsis roots. Our genomic results indicate that BR and auxin induce largely opposite gene expression responses in primary roots.
Project description:Reduced glutathione (GSH) is required for cell cycle initiation and auxin-regulated root meristem development. Transcriptome profiling of the roots and shoots of the root meristemless 1 (rml1) mutant, which has about 3% of the wild type GSH, revealed a divergent auxin and strigolactone response linked to the arrest of the cell cycle.
Project description:Cyclophilin A/DIAGEOTROPICA (DGT) has been linked to auxin-regulated development in tomato and appears to affect multiple developmental pathways. Loss of DGT function results in a pleiotropic phenotype that is strongest in the roots, including shortened roots with no lateral branching. Here, we present an RNA-Seq dataset comparing the gene expression profiles of wildtype (Ailsa Craig variety) and dgt tissues from three spatially separated developmental stages of the root tip (differentiation zone, elongation zone, and meristem), with three replicates for each tissue and genotype.
Project description:Orchids form an endomycorrhizal association with fungal symbionts mainly belonging to Basidiomycetes. The molecular events taking place in orchid mycorrhiza are poorly understood, although the cellular changes necessary to accommodate the fungus and to control nutrient exchange between the symbionts imply a modulation of gene expression. In this study, we used proteomic and transcriptomic approaches to identify changes in the steady-state levels of proteins and transcripts in roots of the green terrestrial orchid Oeceoclades maculata. When mycorrhizal and non-mycorrhizal roots from the same individuals of O. maculata were compared, 94 proteins showed differential accumulation using the label-free protein quantitation approach, 86 using isobaric tagging (iTRAQ) and 60 using 2D-differential electrophoresis. After de novo assembly of transcriptomic data, 11,179 plant transcripts were found to be differentially expressed and 2175 were successfully annotated. The annotated plant transcripts allowed the identification of up- and down-regulated metabolic pathways in mycorrhizal roots, as compared to non-mycorrhizal roots. Overall, proteomics and transcriptomics revealed in mycorrhizal roots increased levels of transcription factors and nutrient transporters, as well as ethylene-related proteins. The expression pattern of proteins and transcripts involved in plant defense responses suggest that plant defense is reduced in mycorrhizal roots. These results expand our current knowledge towards a better understanding of the orchid mycorrhizal symbiosis in adult plants under natural conditions.