Quantitative proteomic analysis identifies proteins and pathways related to neuronal development in differentiated SH-SY5Y neuroblastoma cells
Ontology highlight
ABSTRACT: SH-SY5Y neuroblastoma cells are widely used as in vitro neuronal model. They can be induced to a differentiated phenotype, presenting neurites and synaptical-like structures in response to retinoic (RA) acid and brain-derived neurotrophic factor (BDNF), providing a model to analyze neuronal differentiation. We report a large scale MS quantification of SH-SY5Y cells proteome during its differentiation process after treatment with RA/BDNF. Using isobaric tags for relative and absolute quantification (iTRAQ) approach and phosphopeptide enrichment protocols, we identified a total of 5587 proteins, 366 of them showed differential abundance between both conditions of culture. Differentiated SH-SY5Y cells showed regulation of proteins and phosphosites strongly related to neuronal development, in contrast, undifferentiated cells expressed proteins more related to cell proliferation and control of cell cycle. Interactive network analysis covered processes as focal adhesion, cytoskeleton dynamics and neurodegenerative diseases and pathway analysis displayed regulation of mitogen-activated protein kinase and phosphoinositide 3-kinase/Akt signaling pathways mainly; the proteins involved in those processes might be considered as markers for neuronal differentiation. Overall the data collection presented here can be explored for any studies which intent to use SH-SY5Y as neuronal model.
INSTRUMENT(S): LTQ Orbitrap Velos, Q Exactive
ORGANISM(S): Homo Sapiens (ncbitaxon:9606)
SUBMITTER: Magno Junqueira
PROVIDER: MSV000080133 | MassIVE |
REPOSITORIES: MassIVE
ACCESS DATA