ABSTRACT: IFN gamma induced changes in MSC secretome. Secretome was measured by nanoLCMSMS ising a velos pro and the intracellular proteome via a QExactive via TMT labeling of both.
INSTRUMENT(S): LTQ Orbitrap Velos, Q Exactive
ORGANISM(S): Homo Sapiens (ncbitaxon:9606) Rattus (ncbitaxon:10114)
Project description:G-protein coupled receptors (GPCRs) have diverse roles in physiological processes, including immunity. Gs-coupled GPCRs increase while Gi-coupled ones decrease intracellular cAMP. Previous studies suggest that, in epithelial cells, Gs-coupled GPCRs enhance whereas Gi-coupled GPCRs suppress pro-inflammatory immune responses. In order to examine the issue, we chose beta2 adrenergic receptor and GPR40 as representatives of Gs- and Gi- coupled GPCRs, respectively, and examined their effects on TNF-alpha and IFN-gamma-(TNF-alpha + IFN-gamma) induced gene expression by HaCaT. We used microarrays to detail the global changes of gene expression induced by a beta2 adrenergic receptor agonist terbutaline or GPR40 agonist GW9508 pre-treatment in TNF-alpha + IFN-gamma - stimulated HaCaT cells. HaCaT cells were pre-treated with terbutaline or GW9508, TNF-alpha + IFN-gamma were then added, and cultured for another 24 h. Cells were then used for RNA extraction and hybridization on Affymetrix microarrays. We sought to clarify changes in gene expression after 1) TNF-alpha + IFN-gamma, 2) TNF-alpha + IFN-gamma + terbutaline, and 3) TNF-alpha + IFN-gamma + GW9508 treatment. To this end, we set 4 groups of samples; 1) unstimulated group, 2) TNF-alpha + IFN-gamma-stimulated group, 3) TNF-alpha + IFN-gamma + terbutaline-stimulated group, and 4) TNF-alpha + IFN-gamma + GW9508-stimulated group. In each group, HaCaT cells were stimulated in triplicate wells (n=3).
Project description:Cyclic regeneration of the endometrium, and its repair after parturition or injury, are crucial for successful reproduction. Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSC) facilitate tissue repair via their secretome, which contains growth factors and cytokines that promote wound healing. Despite the implication of MSCs in endometrial regeneration and repair, the mechanisms remain unclear. This study tested the hypothesis that the secretome of MSCs from human BM upregulates human endometrial stromal cell (HESC) proliferation, migration and invasion, and activates pathways to increase HESC motility. MSCs were purchased from ATCC (BM-MSC-1) and cultured from the BM aspirate of a healthy female donor (BM-MSC-2). Indirect co-culture of MSCs and hTERT-immortalized HESCs via a transwell system studied the effect of the BM-MSC secretome on HESC proliferation, migration, and invasion. To study the effect of the MSC secretome on HESC gene expression, HESCs were exposed to the BM-MSC secretome via indirect co-culture for 24 h. Total RNA was extracted from HESCs for RNA sequencing (RNA-Seq). Differentially expressed genes (DEG) and significantly altered pathways were identified. Indirect co-culture of HESCs with BM- MSCs resulted in significant increase in HESC migration and invasion regardless of the source of MSCs. Effects on cellular proliferation varied among the BM-MSC source. Exposure of HESCs to the secretome of BM-MSCs changed the expression of 10,141 genes with FDR < 0.05. There was overlap among 4351 genes between HESCs exposed to BM-MSC-1 and BM-MSC-2, including upregulated expression of cell motility genes common to both BM-MSC exposures. Increased HESC motility by the secretome of BM-MSC appears to be mediated by paracrine and autocrine mechanisms, in part by modifying HESC gene expression. These data support the potential for leveraging the MSC secretome as a novel cell-free therapy in the treatment of disorders of endometrial regeneration.
Project description:Acute myeloid leukemia (AML) cells can shape their niche to their own advantage, perturbing bone marrow stromal and immune landscape. Indeed, AML cells provide the signals, among which inflammatory mediators are crucial, since they are able to subvert mesenchymal stromal cell (MSC) funtions. In particular, IFN-γhigh AML cells hold an inflammatory/immune modulating signature distinct from IFN-γlow cases. We analyzed changes in the gene expression profile of MSCs induced by co-culture with AML cells in vitro. IFN-γhigh but not IFN-γlow AML cells profoundly subverted the MSC transcriptome by inducing immune-modulating pathways, which, intriguingly, included IFN-γ-dependent genes related to regulatory T cell (Treg) differentiation and immune suppression.
Project description:Expression data from HT-29 human colon adenocarcinoma cells treated with IFN-γ for 24 hr Total RNA was isolated from HT-29 cells after 24h stimulation with 200 U ml-1 IFN-γ (Roche). The experiment was done on three biological replicates.
Project description:Transcriptional and lncRNA profiling of human embryonic stem cells derived mesenchymal stem cells within or without IFN-γ treatment
Project description:Type-I (e.g. IFN-alpha, IFN-beta) and type-II IFNs (IFN-gamma) have antiviral, antiproliferative, and immunomodulatory properties. Both types of IFN signal through the Jak/STAT pathway to elicit antiviral activity, yet IFN-gamma is thought to do so only through STAT1 homodimers while type-I IFNs activate both STAT1- and STAT2-containing complexes such as ISGF3. Here we show that ISGF3II - composed of phosphorylated STAT1, unphosphorylated STAT2, and IRF9 - also plays a role in IFN-gamma-mediated antiviral activity in humans. Using phosphorylated STAT1 as a marker for IFN signaling, western blot analysis of IFN-alpha2a treated human A549 cells revealed that pSTAT1 (Y701) levels peaked at 1h, decreased by 6h, and remained at low levels for up to 48h. Cells treated with IFN-gamma showed a biphasic pSTAT1 response with an early peak at 1-2h and a second peak at 15-24h. Gene expression microarray following IFN-gamma treatment for 24h indicated an induction of antiviral genes that are induced by ISGF3 and associated with a type-1 IFN response. Induction of these genes by autocrine type-I and type-III IFN signaling was ruled out using neutralizing antibodies to these IFNs in biological assays and by qRT-PCR. Despite the absence of autocrine IFNs, IFN-gamma treatment induced formation of ISGF3II. This novel transcription factor complex binds to ISRE promoter sequences, as shown by ChIP analysis of the PKR promoter. STAT2 and IRF9 knockdown in A549 cells reversed IFN-gamma-mediated ISRE induction and antiviral activity - implicating ISGF3II formation as a significant component of the cellular response and biological activity of IFN-gamma. Two treatments using three biological replicates each were performed using three million A549 cells. Each was seeded overnight in 10mL complete RPMI and treated. Three were treated with alpha-IFN and three treated with gamma-IFN for 24h. Control samples were left untreated.
Project description:The source of IFN-γ in ovarian cancer microenvironment and its biological effect to the tumor cells is unclear. The immortalized human ovarian surface epithelial cell line, HOSE-E7/hTERT (HOSE) was treated with IFN-γ and expression microarray analysis was performed, and probes showing significantly higher values in IFN-γ-added group were termed “IFN-γ signature genes (295 probes)”. We then applied this signature to our ovarian cancer microarray data, which included 75 ovarian cancer clinical samples, by means of ss-GSEA. IFN-γ signature score was strongly correlated to the number of infiltrating CD4-positive or CD8-positive lymphocytes in the tumors. These data suggest that the IFN-γ in the ovarian cancer microenvironment is derived from lymphocytes, and an IFN-γ-rich microenvironment is strongly correlated to a lymphocyte-rich microenvironment.