Mechanisms of Resistance to Prostate-Specific Membrane Antigen-Targeted Radioligand Therapy in a Mouse Model of Prostate Cancer
Ontology highlight
ABSTRACT: Purpose: Prostate-specific membrane antigen-targeted radioligand therapy (PSMA-RLT) is effective against prostate cancer (PCa), but all patients relapse eventually. Poor understanding of the underlying resistance mechanisms represents a key barrier to development of more effective RLT. We investigate the proteome and phosphoproteome in a mouse model of PCa to identify signaling adaptations triggered by PSMA-RLT.
Experimental Design: Therapeutic efficacy of PSMA-RLT was assessed by tumor volume measurements, time to progression, and survival in C4-2 or C4-2 TP53-knockout tumor-bearing Nod scid gamma mice. Two days post-RLT, the (phospho)proteome was analyzed by mass spectrometry.
Results: PSMA-RLT significantly improved disease control in a dose-dependent manner. (Phospho)proteomic datasets revealed activation of genotoxic stress response pathways, including deregulation of DNA damage/replication stress response, TP53, androgen receptor, PI3K/AKT, and MYC signaling. C4-2 TP53-knockout tumors were less sensitive to PSMA-RLT than parental counterparts, supporting a role for TP53 in mediating RLT responsiveness.
Conclusions: We identified signaling alterations that may mediate resistance to PSMA-RLT in a PCa mouse model. Our data enable the development of rational synergistic RLT-combination therapies to improve outcomes for PCa patients.
INSTRUMENT(S): Q Exactive Plus
ORGANISM(S): Homo Sapiens (ncbitaxon:9606)
SUBMITTER: Caius Radu
PROVIDER: MSV000086408 | MassIVE | Wed Nov 04 10:02:00 GMT 2020
REPOSITORIES: MassIVE
ACCESS DATA