Project description:Because of essential roles of DNA damage response (DDR) in the maintenance of genomic integrity, cellular homeostasis, and tumor suppression, targeting DDR has become a promising therapeutic strategy for cancer treatment. However, the benefits of cancer therapy targeting DDR are limited mainly due to the lack of predictive biomarkers. To address this challenge, we performed CRISPR screens to search for genetic vulnerabilities that affect cells' response to DDR inhibition. By undertaking CRISPR screens with inhibitors targeting key DDR mediators, i.e. ATR, ATM, DNAPK and CHK1, we obtained a global and unbiased view of genetic interactions with DDR inhibition. Specifically, we identified YWHAE loss as a key determinant of sensitivity to CHK1 inhibition. We showed that KLHL15 loss protects cells from DNA damage induced by ATM inhibition. Moreover, we validated that APEX1 loss sensitizes cells to DNAPK inhibition. Additionally, we compared the synergistic effects of combining different DDR inhibitors and found that an ATM inhibitor plus a PARP inhibitor induced dramatic levels of cell death, probably through promoting apoptosis. Our results enhance the understanding of DDR pathways and will facilitate the use of DDR-targeting agents in cancer therapy.
Project description:During DNA double strand breaks (DSBs) repair, coordinated activation of phosphatidylinositol 3-kinase (PI3K)-like kinases can activate p53 signaling pathway. Recent findings have identified novel interplays among these kinases demonstrating amplified first p53 pulses under DNA-PK inhibition. However, no theoretical model has been developed to characterize such dynamics. In current work, we modeled the prolonged p53 pulses with DNA-PK inhibitor. We could identify a dose-dependent increase in the first pulse amplitude and width. Meanwhile, weakened DNA-PK mediated ATM inhibition was insufficient to reproduce such dynamic behavior. Moreover, the information flow was shifted predominantly to the first pulse under DNA-PK inhibition. Furthermore, the amplified p53 responses were relatively robust. Taken together, our model can faithfully replicate amplified p53 responses under DNA-PK inhibition and provide insights into cell fate decision by manipulating p53 dynamics.
Project description:The DNA damage response (DDR) is a set of cellular events that follows the generation of DNA damage. Recently, site-specific small non-coding RNAs, also termed DNA damage response RNAs (DDRNAs), have been shown to play a role in DDR signalling and DNA repair. Dysfunctional telomeres activate DDR in ageing, cancer and an increasing number of identified pathological conditions. Here we show that, in mammals, telomere dysfunction induces the transcription of telomeric DDRNAs (tDDRNAs) and their longer precursors from both DNA strands. DDR activation and maintenance at telomeres depend on the biogenesis and functions of tDDRNAs. Their functional inhibition by sequence-specific antisense oligonucleotides allows the unprecedented telomere-specific DDR inactivation in cultured cells and in vivo in mouse tissues. In summary, these results demonstrate that tDDRNAs are induced at dysfunctional telomeres and are necessary for DDR activation and they validate the viability of locus-specific DDR inhibition by targeting DDRNAs.
Project description:Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity.
Project description:Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They are very effective at identifying DNA repair pathways, highlighting new damage-dependent roles for the Slt2 kinase, Pph3 phosphatase, and histone variant Htz1. The data also reveal that protein complexes are generally stable in response to perturbation, but the functional relations between these complexes are substantially reorganized. Differential networks chart a new type of genetic landscape that is invaluable for mapping cellular responses to stimuli.
Project description:Hypoxia serves a crucial role in the development of drug resistance in various cancer cells. Therefore, many attempts targeting hypoxia are underway to overcome the drug resistance mediated by hypoxia. This strategy is useful for multiple myeloma (MM) cells, as MM cells reside within the bone marrow, where oxygen concentrations are relatively low. A natural compound library was screened to identify compounds exerting cytotoxicity in MM cells under hypoxic conditions. Bufalin exhibited marked cytotoxicity to MM cells under normoxic and hypoxic conditions. No significant toxicity was observed in lymphocytes obtained from healthy donors. Under normoxic conditions, bufalin induced a DNA double strand break (DSB) response, ROS induction and apoptosis within 24 with a rapid response compared with melphalan. Interestingly, the bufalin-induced DSB response was not impaired by low oxygen concentrations while the DSB response by melphalan was reduced. Furthermore, treatment with bufalin abolished HIF-1? expression under hypoxia, suggesting that bufalin exerts cytotoxicity under hypoxia by regulating HIF-1?. These results indicate that bufalin induces apoptosis in MM cells through DSB under hypoxic conditions by inhibiting HIF-1?, suggesting that bufalin could be useful for eradication of drug-resistant MM cells in the hypoxic microenvironment.
Project description:Analysis of mutational signatures caused by DNA repair defects in human induced pluripotent stem (iPS) cells. A reference human iPS cell line will be used for genetic manipulation to introduce homozygous knockouts of 100 genes known to be involved in or connected to DNA repair or DNA editing. Following a defined period of growth after homozygous knockout of each gene, sub clones will be generated and sequenced. The progenitor “parental†IPS cell line will be used to generate reference sequence data, in order to determine the mutational signature acquired due to the gene knockout.
Project description:The RB/E2F axis represents a critical node of cell signaling that integrates a diverse array of signaling pathways. Recent evidence has suggested a role for E2F-mediated gene transcription in DNA damage response and repair, as well as apoptosis signaling. Herein, we investigated how repression of E2F activity via CDK4/6 inhibition and RB activation impacts the response of triple negative breast cancer (TNBC) to frequently used therapeutic agents. In combination with taxanes and anthracyclines CDK4/6 inhibition and consequent cell cycle arrest prevented the induction of DNA damage and associated cell death in an RB-dependent manner; thereby demonstrating antagonism between the cytostatic influence of the CDK-inhibitor and cytotoxic agents. As many of these effects were secondary to cell cycle arrest, ?-irradiation (IR) was utilized to examine effects of CDK4/6 inhibition on direct DNA damage. Although E2F controls a number of genes involved in DNA repair (e.g. Rad51), CDK4/6 inhibition did not alter the overall rate of DNA repair, rather it significantly shifted the burden of this repair from homologous recombination (HR) to non-homologous end joining (NHEJ). Together, these data indicate that CDK4/6 inhibition can antagonize cytotoxic therapeutic strategies and increases utilization of error-prone DNA repair mechanisms that could contribute to disease progression.
Project description:DNA damage response pathways are crucial for protecting genome stability in all eukaryotes. Saccharomyces cerevisiae Dna2 has both helicase and nuclease activities that are essential for Okazaki fragment maturation, and Dna2 is involved in long-range DNA end resection at double-strand breaks. Dna2 forms nuclear foci in response to DNA replication stress and to double-strand breaks. We find that Dna2-GFP focus formation occurs mainly during S phase in unperturbed cells. Dna2 colocalizes in nuclear foci with 25 DNA repair proteins that define recombination repair centers in response to phleomycin-induced DNA damage. To systematically identify genes that affect Dna2 focus formation, we crossed Dna2-GFP into 4293 nonessential gene deletion mutants and assessed Dna2-GFP nuclear focus formation after phleomycin treatment. We identified 37 gene deletions that affect Dna2-GFP focus formation, 12 with fewer foci and 25 with increased foci. Together these data comprise a useful resource for understanding Dna2 regulation in response to DNA damage.
Project description:Around one sixth of breast cancer cases are classified as triple-negative breast cancer (TNBC), named after the absence of the expression of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2); however, patients with TNBC suffer from poor clinical outcome and shortage of targeted therapy. Genistein, an estrogenic soy isoflavone, shows anti-cancer effects in TNBC cells such as inducing G2/M cell cycle arrest and apoptosis. However, the underlying mechanism of its anti-cancer effects is poorly understood and its elucidation can help the development of novel therapeutic strategies for TNBC. In this study, by combining isobaric tag-based TMT labeling with titanium dioxide-based phosphopeptide enrichment, we quantitated 5,445 phosphorylation sites on 2,008 phosphoproteins in a TNBC cell line, MDA-MB-231, upon genistein treatment. Our analysis revealed 332 genistein-regulated phosphorylation sites on 226 proteins. Our data show that genistein can regulate several biological processes during the cell cycle, including DNA replication, cohesin complex cleavage, and kinetochore formation. In the meantime, genistein can also activate DNA damage response, including activation of ATR and BRCA1 complex. Overall, for the first time, our study present the evidence that genistein could inhibit TNBC cell growth by regulating the cell cycle and DNA damage response. Our findings help elucidate the mechanisms through which genistein exerts its anti-cancer effects in TNBC cells.