Project description:Using mass spectrometry-based label-free quantitative (LFQ) proteomics analysis of in vitro differentiated murine Th17 and induced T regulatory (iTreg) cells. More than 4000 proteins covering almost all subcellular compartments were detected. Quantitative comparison of the protein expression profiles resulted in the identification of proteins specifically expressed in the Th17 and iTreg cells. Importantly, our combined analysis of proteome and gene expression data revealed protein expression changes that were not associated with changes at the transcriptional level.
Project description:DDA analysis of phage phiR201 infecting Yersinia enterocolitica using the Uniprot proteomes UP000002908 and UP000000642 as sequence database
Project description:protein profiling of mouse lung organogenesis from embryonic day E13.5 until adulthood by gel-free two-dimensional liquid chromatography coupled to large-scale tandem mass spectrometry (MudPIT). protein expression in Nmyc loss of function mutant with a comparison to wildtype at E18 Keywords: protein, proteomics, Mudpit, lung, development, nuclear, cytosol, mitochondria, mouse
Project description:This dataset includes raw label-free mass spectrometry proteomics data of different sinonasal tumor entities as well as normal sinonasal tissue. 72 samples were processed on a Q Exactive HF-X instrument coupled to an easy nanoLC 1200 system using one microgram of peptides and an 110 minutes gradient.
Project description:More than half of the protein-coding genes in bacteria are organized in polycistronic operons composed of two or more genes. Whether the operon organization maintains the stoichiometric expression of the genes within an operon remain under debate. In this study, we performed a label-free data-independent acquisition hyper reaction monitoring mass-spectrometry (HRM-MS) experiment to quantify the Escherichia coli proteome in exponential phase and quantified 93.6% of the cytosolic proteins, covering 67.9% and 56.0% of the translating polycistronic operons in BW25113 and MG1655 strains, respectively. We found the shorter operons tend to be more tightly controlled for stoichiometry than longer operons, and those operons for metabolic pathways are less controlled for stoichiometry compared with operons for protein complexes, illustrating the multifaceted nature of the operon-wise regulation: the operon-wise unified transcriptional level and gene-specific translational level. This multi-level regulation benefits the host by optimizing the efficiency of the productivity of metabolic pathways and maintenance of different types of protein complexes.
Project description:The identification of Lgr5 as an intestinal stem cell marker has made it possible to isolate and study primary intestinal stem cells. Applying quantitative mass spectrometry as well as transcriptomic analysis, we profiled the protein and gene changes between FACS-sorted Lgr5+ve stem cells and their immediate undifferentiated daughter cells. The overall comparison of mRNA and protein levels revealed a high level of correlation, implying that the initial control of intestinal stem cell biology occurs largely at the mRNA level. Taken together, our study presents a valuable resource for the study of intestinal stem cell biology. We used cell fractions of intestines from Lgr5-EGFP-ires-CreERT2 mice, expressing GFP under the control of the Lgr5 promoter. RNA was isolated from two FACS sorted cell populations, one expressing GFP at high levels (GFPhi) and the other expressing GFP at low levels (GFPlow). The gates set to sort cells for the expression profiling were the same as for the cells used for the mass spectrometry analysis. Differentially labelled cRNA from GFPhi and GFPlow cells from two different sorts (each combining three different mice) were hybridized on 4X44K Agilent Whole Mouse Genome dual colour Microarrays (G4122F) in two dye swap experiments, resulting in four individual arrays.