Project description:Diazotrophs provide the main source of reactive nitrogen to the ocean, sustaining primary productivity and CO2 uptake. Climate change is raising temperatures, decreasing pH and reducing nutrient availability. How microbes respond to these changes is largely unexplained. Similarly, the role of DOM in the growth and survival of certain diazotrophic organisms is poorly understood. Moreover, growing evidence indicates some diazotrophs are capable of utilizing distinct DOM compounds via osmotrophy providing them with additional metabolic plasticity and ecological advantages compared to other non-diazotrophic microbes. We aimed to understand how osmotrophy could modify carbon uptake and alleviate energy stress in diazotrophs under ongoing climate change perturbations. We hypothesized that Crocosphaera preferentially uses DOM when labile as a carbon source in present pH conditions, as compared to future more acidic scenarios with higher access to inorganic carbon. Alternatively, the lower pH may cause Crocosphaera to be energy limited when trying to maintain intracellular homeostasis which would favour DOM uptake as an extra source of energy.
Project description:Interlab-LCMS study carried out on lyophilized algae (Synechococcus sp.) extract and marine
dissolved organic matter (DOM). This dataset contains the results (both .raw and .mzML) from Tomas Pluskal's lab (Lab6).
Project description:Hirschsprung’s disease (HSCR) is a congenital disease which is characterized by the reduction or absence of neurons and glial cells in the enteric nervous system (ENS). Failure of neural crest cells (NCCs) to colonize the gut during the embryonic development has been considered as one of the possible causes of the disease. In this study, the migration and gene expression of sacral NCCs from the spontaneous mouse mutant Dominant megacolon (Dom) which is a HSCR animal model expressing a mutated transcription factor Sox10, were analyzed in order to identify candidate genes which may possibly affect the NCC migration in the mutant.
Project description:Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly found in cereals and grains worldwide. The presence of this fungal secondary-metabolite raises public-health concerns at both the agriculture and food industry level. The toxicity of DON is mainly characterized by its ability to inhibit ribosomal protein biosynthesis. Recently, we have shown that DON has a negative impact on gut integrity, a feature also noticed for Campylobacter (C.) jejuni. We further demonstrated that DON increased the load of C. jejuni in the gut and inner organs. In contrast, feeding the less toxic DON metabolite deepoxy-deoxynivalenol (DOM-1) to broilers reduced the Campylobacter load in vivo. Consequently, it can be hypothesized that DON and DOM-1 have a direct or indirect effect on the growth profile of C. jejuni. The aim of the present study was to further resolve the nature of this interaction in vitro by co-incubation and RNA-sequencing. The co-incubation of C. jejuni with DON resulted in significantly higher bacterial growth rates from 30 h of incubation onwards. On the contrary, the co-incubation of C. jejuni with DOM-1 reduced the CFU counts, indicating that this DON metabolite might contribute to reduce the burden of C. jejuni in birds, altogether confirming in vivo data. Furthermore, the transcriptomic profile of C. jejuni following incubation with either DON or DOM-1 differed. Co-incubation of C. jejuni with DON significantly increased the expression of multiple genes which are critical for Campylobacter growth, particularly members of the Flagella gene family, frr (ribosome-recycling factor), PBP2 futA-like (Fe3+ periplasmic binding family) and PotA (ATP-binding subunit). These organelles are required for pathogenicity-related phenotypes including motility, biofilm formation, host cell interactions, and host colonization, which may explain the high Campylobacter load in the intestine of DON-fed broiler chickens. On the contrary, DOM-1 downregulated the Flagella gene family and upregulated ribosomal proteins. The results highlight the adaptive mechanisms involved in the transcriptional response of C. jejuni to DON and its metabolite DOM-1, based on the following effects: (a) ribosomal proteins; (b) flagellar proteins; (c) engagement of different metabolic pathways. The results provide insight into the response of an important intestinal microbial pathogen against DON and lead to a better understanding of the luminal or environmental acclimation mechanisms in chickens.