Project description:For the purpose of Covid-19 antibody testing, the human plasma samples acquired over a period of 310 days from August 18, 2021, to June 22, 2022, were subjected to DIA- LC-MS proteomics analysis.
Project description:The intermediate filament protein Nestin serves as a biomarker for stem cells and has been used to identify subsets of cancer stem-like cells. However, the mechanistic contributions of Nestin to cancer pathogenesis are not understood. Here we report that Nestin binds the hedgehog pathway transcription factor Gli3 to mediate the development of medulloblastomas of the hedgehog subtype. In a mouse model system, Nestin levels increased progressively during medulloblastoma formation resulting in enhanced tumor growth. Conversely, loss of Nestin dramatically inhibited proliferation and promoted differentiation. Mechanistic investigations revealed that the tumor-promoting effects of Nestin were mediated by binding to Gli3, a zinc finger transcription factor that negatively regulates hedgehog signaling. Nestin binding to Gli3 blocked Gli3 phosphorylation and its subsequent proteolytic processing, thereby abrogating its ability to negatively regulate the hedgehog pathway. Our findings show how Nestin drives hedgehog pathway-driven cancers and uncover in Gli3 a therapeutic target to treat these malignancies. Nestin+ and Nestin- GNPs (granule neuron precursors) were purified from Nestin-CFP/Math1-Cre/Ptch1-loxp cerebella at postnatal day 4 by FACs, and total RNA from these two cell populations were extracted, and then labeled and hybridized to Affymetrix Mouse Genome 430 2.0 arrays.
Project description:Recombinant human erythropoietin administration studies involving transcriptomic approaches have demonstrated a gene-expression signature that could aid detection of blood doping. However, current anti-doping testing does not involve blood collection into tubes with RNA preservative. This study investigated if whole blood in long-term storage and whole blood leftover from standard haematological testing in short-term storage could be used for transcriptomic analysis despite lacking RNA preservative. Whole blood samples were collected from thirteen and fourteen healthy males, for long-term and short-term storage experiments. Long-term storage: whole blood collected into Tempus™ tubes and K2EDTA tubes and subjected to long-term (i.e., −80°C) storage and RNA extracted. After storage, K2EDTA tubes were thawed and extracted using GeneJET RNA Purification Kit (Thermo Fisher Scientific, Vilnius, Lithuania) or Tempus™ Spin RNA Isolation Kit (Life Technologies, Carlsbad, CA, USA). RNA quality and purity was sufficient for gene expression analysis. Principle Component Analysis of microarray and RNA-seq gene expression data for long-term storage: When comparing gene expression between blood tubes with and without RNA preservation, 6% (4058 transcripts) were differentially expressed. RNA quantity, purity and integrity was not significantly compromised from long-term storage in blood storage tubes lacking RNA preservative, indicating that transcriptomic analysis could be conducted using anti-doping samples collected or biobanked without RNA preservation.