Project description:We isolated and sequenced mRNA from Streptomyces venezuelae grown on two different solid media that promote exploratory behaviour in this bacterial species. The data was analyzed using DeSeq2 to identify genes that undergo changes in expression over time as well as differences in gene expression patterns between the two media conditions.
Project description:We isolated and sequenced mRNA from Streptomyces venezuelae grown on two different solid media that promote different growth behaviour in this bacterial species. The data was analyzed using DeSeq2 to identify genes that undergo changes in expression over time as well as differences in gene expression patterns between the two media conditions.
Project description:Streptomyces sp. M7 has demonstrated ability to remove lindane from culture media and soils. In this study, we used MS-based label-free quantitative proteomic to understand lindane degradation and its metabolic context in Streptomyces sp. M7. We identified the proteins involved in the up-stream degradation pathway. Our results demonstrated that mineralization of lindane is feasible since proteins from an unusual down-stream degradation pathway were also identified. Degradative steps were supported by an active catabolism that supplied energy and reducing equivalents in the form of NADPH. This is the first study in which degradation steps of an organochlorine compound and metabolic context are elucidate in a biotechnological genus as Streptomyces. These results serve as basement to study other degradative actinobacteria and to improve the degradation processes of Streptomyces sp. M7.
Project description:Chitin is the second most abundant biopolymer present in soils and is utilized by antibiotic-producing Streptomyces species. Its monomer, N-acetylglucosamine (NAG), regulates the developmental program of the model organism Streptomyces coelicolor. NAG blocks differentiation when growing on rich medium whilst it promotes development on poor culture media. We report here the negative effect of NAG on tacrolimus (FK506) production in Streptomyces tsukubaensis NRRL 18488 growing on a defined rich medium. Using microarrays technology, we found that GlcNAc represses the transcription of fkbN, encoding the main transcriptional activator of the tacrolimus biosynthetic cluster, and of ppt1, encoding a phosphopantheteinyltransferase involved in tacrolimus biosynthesis. On the contrary, NAG stimulated transcription of genes related to amino acid and nucleotide biosynthesis, DNA replication, RNA translation, glycolysis, pyruvate metabolism, and key gene members of the PHO regulon. The results obtained support those previously reported for S. coelicolor, but some important differences were observed
Project description:The terminal compartments of Streptomyces are less prone to transcription than the rest of the chromosome. Indeed, the expression of the highly variable regions enriched in those compartments is generally conditional and often requires an empirical approach to characterize the inducing conditions. For instance, in the context of identifying adequate antibiotic production conditions, an OSMAC (“One Strain Many Compounds”) approach is frequently implemented, based on strain cultivation in different environmental conditions (composition of the medium, growth time, temperature, co-cultures, etc.). Likewise, to find the expression conditions of a complete prophage of Streptomyces ambofaciens ATCC 23877 (named 'Samy' phage/prophage), we conducted a similar approach by analyzing the transcriptomes in five solid media (HT, SAF, ONA, MMM, MMM+NAG). The terminal compartments of Streptomyces are less prone to transcription than the rest of the chromosome. Indeed, the expression of the highly variable regions enriched in those compartments is generally conditional and often requires an empirical approach to characterize the inducing conditions. For instance, in the context of identifying adequate antibiotic production conditions, an OSMAC (“One Strain Many Compounds”) approach is frequently implemented, based on strain cultivation in different environmental conditions (composition of the medium, growth time, temperature, co-cultures, etc.). Likewise, to find the expression conditions of a complete prophage of Streptomyces ambofaciens ATCC 23877 (named 'Samy' phage/prophage), we conducted a similar approach by analyzing the transcriptomes in five solid media (HT, SAF, ONA, MMM, MMM+NAG).
Project description:This study compared the genome of Streptomyces rimosus rimosus against that of Streptomyces coelicolor. It also compared 4 strains with changes in oxytetracycline production and derived from G7, the type strain, against G7. Keywords: Comparative genomic hybridization
Project description:We studied the influence of copper in physiological and morphological differentiation of Streptomyces coelicolor. We demonstrate differences in phenotype (germination, growth rate, antibiotic production) and genetic expression between a strain mutated at copper chaperone CopZ (SCO2730::Tn5062), the wild-type strain and a wild-type strain sporulated in a media with 80µM CuSO4. These differences are correlated with the cytosolic copper. Our results demonstrate a pleiotropic effect of copper modulating S. coelicolor development.
Project description:This work was carried out to elucidate the proteins that are regulated by the two-component system CutRS in Streptomyces coelicolor M145 and how this response changes in the presence of glucose. A comparison of the whole cell proteomes of Streptomyces coelicolor M145 WT and Streptomyces coelicolor M145 ∆cutRS on both DNA (no glucose) and DNAD (with glucose) was made.
Project description:We performed ribosome profiling which is the deep-sequencing of mRNA fragments protected by translating ribosome for two Streptomyces species through different growth phases to provide the translatome data
Project description:In order to define the impact of phosphate (Pi) availability on cellular metabolism the project aimed to perform a comparative analysis of the proteomes of two Streptomyces strains with different abilities to produce antibiotics, S. coelicolor and S. lividans as well as of the pptA mutant of S. lividans, grown low (1mM) and high (5mM) phosphate (Pi) availability conditions. Interestingly, in contrast to most Streptomyces species, S. coelicolor produces more antibiotics in Pi proficiency than in Pi limitation, S. lividans does not produce antibiotics in any Pi conditions and the pptA mutant produces antibiotics only in Pi limitation. This in-depth proteomic comparison of three Streptomyces strains (S. coelicolor, S. lividans wt and pptA mutant), in different growth conditions (time and Pi concentration in the medium) was performed on four biological replicates. Protein abundance changes were determined using two label-free mass spectrometry based-quantification methods: spectral count (SC) and MS1 ion intensities named XIC (for eXtracted Ion Current). Our proteomic data reveal for the first time, the impact of Pi availability on the abundance of approximately 4000 proteins of these Streptomyces strains with different abilities to produce antibiotics. The most striking feature differentiating these strains was the much higher abundance of enzymes of the respiratory chain in both phosphate conditions in S. coelicolor compared to the S. lividans strains.