Project description:Lipids contribute to the structure, development, and function of healthy brains. Dysregulated lipid metabolism is linked to aging and diseased brains. However, our understanding of lipid metabolism in aging brains remains limited. Here we examined the brain lipidome of mice across their lifespan using untargeted lipidomics. Co-expression network analysis highlighted a progressive decrease in 3-sulfogalactosyl diacylglycerols (SGDGs) and SGDG pathway members, including the potential degradation products lyso-SGDGs. SGDGs show an age-related decline specifically in the central nervous system and are associated with myelination. We also found that an SGDG dramatically suppresses LPS-induced gene expression and release of pro-inflammatory cytokines from macrophages and microglia by acting on the NF-κB pathway. The detection of SGDGs in human and macaque brains establishes their evolutionary conservation. This work enhances interest in SGDGs regarding their roles in aging and inflammatory diseases and highlights the complexity of the brain lipidome and potential biological functions in aging.
Project description:ChIP-seq of Sox10 in spinal cord and sciatic nerve 2 independent Sox10 ChIP samples each for spinal cord (CNS) and sciatic nerve (PNS), with respective inputs
Project description:A screen of 5 anti-inflammatory compounds for their effects in explanted, cultured rat spinal cord slices. All injured (explanted) cords are cultured for 4 hrs.
Project description:A screen of 5 anti-inflammatory compounds for their effects in explanted, cultured rat spinal cord slices. All injured (explanted) cords are cultured for 4 hrs. Keywords: ordered
Project description:5069 transcriptomes of single oligodendrocyte cells from spinal cord, substantia nigra-ventral tegmental area, striatum, amygdala, hypothalamic nuclei, zona incerta, hippocampus, and somatosensory cortex of male and female mice between post-natal day 21 and 90. The study aimed at identifying diverse populations of oligodendrocytes, and revealing dynamics of oligodendrocyte maturation.
Project description:ChIP-seq of Sox10 in spinal cord and sciatic nerve was performed to determine shared and unique binding sites for Sox10 in oligodendrocytes and Schwann cells, respectively. Sox10 is required for both Schwann cell and oligodendrocyte development. In addition, differentiation of myelinating glia is dependent upon axonal signaling, so these studies were performed in vivo.
Project description:5069 transcriptomes of single oligodendrocyte cells from spinal cord, substantia nigra-ventral tegmental area, striatum, amygdala, hypothalamic nuclei, zona incerta, hippocampus, and somatosensory cortex of male and female mice between post-natal day 21 and 90. The study aimed at identifying diverse populations of oligodendrocytes, and revealing dynamics of oligodendrocyte maturation. 5069 individual cells were sampled from CNS regions of mice of various strains as detailed in the protocols section
Project description:This SuperSeries is composed of the following subset Series: GSE40506: Genome-wide mapping of Olig2 targets in primary oligodendrocytes GSE40510: Expression data from Sip1 cKO and control mice spinal cord Refer to individual Series
Project description:Increased adipose tissue lipogenesis is associated with enhanced insulin sensitivity. Mice overexpressing the Glut4 glucose transporter in adipocytes have elevated lipogenesis and increased glucose tolerance despite being obese with elevated circulating fatty acids. Lipidomic analysis of adipose tissue revealed the existence of branched fatty acid esters of hydroxy fatty acids (FAHFAs) that were elevated 16- to 18-fold in these mice. FAHFA isomers differ by the branched ester position on the hydroxy fatty acid (e.g., palmitic-acid-9-hydroxy-stearic-acid, 9-PAHSA). PAHSAs are synthesized in vivo and regulated by fasting and high-fat feeding. PAHSA levels correlate highly with insulin sensitivity and are reduced in adipose tissue and serum of insulin-resistant humans. PAHSA administration in mice lowers ambient glycemia and improves glucose tolerance while stimulating GLP-1 and insulin secretion. PAHSAs also reduce adipose tissue inflammation. In adipocytes, PAHSAs signal through GPR120 to enhance insulin-stimulated glucose uptake. Thus, FAHFAs are endogenous lipids with the potential to treat type 2 diabetes.