Project description:Kidney fibrosis represents an urgent unmet clinical need due to the lack of effective therapies and inadequate understanding of the molecular pathogenesis. We have generated a comprehensive and integrated multi-omics data set (proteomics, mRNA and small RNA transcriptomics) of fibrotic kidneys that is searchable through a user-friendly web application. Two commonly used mouse models were utilized: a reversible chemical-induced injury model (folic acid (FA) induced nephropathy) and an irreversible surgically-induced fibrosis model (unilateral ureteral obstruction (UUO)). mRNA and small RNA sequencing as well as 10-plex tandem mass tag (TMT) proteomics were performed with kidney samples from different time points over the course of fibrosis development. The bioinformatics workflow used to process, technically validate, and integrate the single data sets will be described. In summary, we present temporal and integrated multi-omics data from fibrotic mouse kidneys that are accessible through an interrogation tool to provide a searchable transcriptome and proteome for kidney fibrosis researchers.
Project description:Kidney fibrosis represents an urgent unmet clinical need due to the lack of effective therapies and inadequate understanding of the molecular pathogenesis. We have generated a comprehensive and integrated multi-omics data set (proteomics, mRNA and small RNA transcriptomics) of fibrotic kidneys that is searchable through a user-friendly web application. Two commonly used mouse models were utilized: a reversible chemical-induced injury model (folic acid (FA) induced nephropathy) and an irreversible surgically-induced fibrosis model (unilateral ureteral obstruction (UUO)). mRNA and small RNA sequencing as well as 10-plex tandem mass tag (TMT) proteomics were performed with kidney samples from different time points over the course of fibrosis development. The bioinformatics workflow used to process, technically validate, and integrate the single data sets will be described. In summary, we present temporal and integrated multi-omics data from fibrotic mouse kidneys that are accessible through an interrogation tool to provide a searchable transcriptome and proteome for kidney fibrosis researchers.
Project description:In this work, a microwell-chip was prepared and modified. The microwell-chip was used for extraction of metabolites and subsequent protein digestion. Next, direct electrospray ionization mass spectrometry (ESI-MS) was adopted for metabolome identification and a data independent acquisition (DIA)-MS approach was established for simultaneous proteome profiling and phosphoproteome analysis. In particular, application of this strategy provides a multi-omics view of cellular changes.
Project description:Here we describe our unprecedented approach in proposing parsley (PAR) as a nutraceutical intervention in inflammatory bowel disease (IBD) using a mouse model of dextran sodium sulphate (DSS)-induced colitis, following a multi-integrated-omics analysis. PAR supplementation (n=7) significantly improved colon shortening and increased the disease activity index compared to the DSS group (n=7). The colonic transcriptome revealed the down-regulation of inflammatory cytokines, and the hepatic transcriptome and metabolome revealed the up-regulation of fatty acid synthesis genes, thereby improving body weight loss. Down-regulated cancer markers were observed in the hepatic transcriptome and proteome. A global plasma metabolite analysis indicated shifts in the citric cycle and urea cycle, implicating improved impaired glycolysis and oxidative stress. Our integration of three omics analyses highlighted the involvement of the methionine-recycling pathway and PARM-bM-^@M-^Ys role in decreasing the risk of IBD. This pioneering use of multi-integrated-omics in the evaluation of nutrientsM-bM-^@M-^Y effects on physiology is expected to be widely useful and informative, shaping the future of nutritional research. Here we describe our unprecedented approach in proposing parsley (PAR) as a nutraceutical intervention in inflammatory bowel disease (IBD) using a mouse model of dextran sodium sulphate (DSS)-induced colitis, following a multi-integrated-omics analysis. PAR supplementation (n=7) significantly improved colon shortening and increased the disease activity index compared to the DSS group (n=7). The colonic transcriptome revealed the down-regulation of inflammatory cytokines, and the hepatic transcriptome and metabolome revealed the up-regulation of fatty acid synthesis genes, thereby improving body weight loss. Down-regulated cancer markers were observed in the hepatic transcriptome and proteome. A global plasma metabolite analysis indicated shifts in the citric cycle and urea cycle, implicating improved impaired glycolysis and oxidative stress. Our integration of three omics analyses highlighted the involvement of the methionine-recycling pathway and PARM-bM-^@M-^Ys role in decreasing the risk of IBD. This pioneering use of multi-integrated-omics in the evaluation of nutrientsM-bM-^@M-^Y effects on physiology is expected to be widely useful and informative, shaping the future of nutritional research. Total hepatic and colonic RNA from each respective group were pooled (n=7). The microarray analysis was carried as out as described by Jia et al. 8 Mouse Genome 430 2.0 Array GeneChips (Affymetrix, Santa Clara, CA) containing over 30,000 gene probe sets were used for genome-wide expression profiling.
Project description:To evoke further attention to the potential hazard of increasingly accumulative blue light exposure, we construct a series of in vivo Drosophila models employed for multi-omics analyses. This project includes the identification results of untargeted metabolome quantification by LC-MS/MS and the Input and m6A IP data of MeRIP-seq of w1118 male adult whole flies.
Project description:We use Saccharomyces cerevisiae to perform absolute quantitative multi-omics analysis to map interactions of different cellular processes during the yeast cell cycle.
Project description:We use Saccharomyces cerevisiae grown on ethanol to perform absolute quantitative multi-omics analysis to map interactions of different cellular processes during the yeast cell cycle.
Project description:In this study we used single cell multi-omics profiling to create an atlas of the human YS to gain insights into its haematopoietic, metabolic and nutritive functions during early embryonic development. This contains fetal liver CITE-seq (surface protein and cytosolic RNA content) data from six biological replicates. Pooled lanes were demultiplexed using SoupOrCell (for alignment and demultiplexing software and version numbers, please see accompanying manuscript and protocols within this accession). Raw count files provided are directly as output by alignment software, without any quality control applied. Quality control is described in accompanying manuscript methods. Metadata by barcode are provided as supplementary tables in accompanying manuscript.