Project description:Ribosomally synthesized and posttranslationally modified peptides (RiPPs), especially from microbial sources, are a large group of bioactive natural products that are a promising source of new (bio)chemistry and bioactivity.1 In light of exponentially increasing microbial genome databases and improved mass spectrometry (MS)-based metabolomic platforms, there is a need for computational tools that connect natural product genotypes predicted from microbial genome sequences with their corresponding chemotypes from metabolomic data sets. Here, we introduce RiPPquest, a tandem mass spectrometry database search tool for identification of microbial RiPPs, and apply it to lanthipeptide discovery. RiPPquest uses genomics to limit search space to the vicinity of RiPP biosynthetic genes and proteomics to analyze extensive peptide modifications and compute p-values of peptide-spectrum matches (PSMs). We highlight RiPPquest by connecting multiple RiPPs from extracts of Streptomyces to their gene clusters and by the discovery of a new class III lanthipeptide, informatipeptin, from Streptomyces viridochromogenes DSM 40736 to reflect that it is a natural product that was discovered by mass spectrometry based genome mining using algorithmic tools rather than manual inspection of mass spectrometry data and genetic information. The presented tool is available at cyclo.ucsd.edu.
Project description:Covering: 2016 to 2021With genetic information available for hundreds of thousands of organisms in publicly accessible databases, scientists have an unprecedented opportunity to meticulously survey the diversity and inner workings of life. The natural product research community has harnessed this breadth of sequence information to mine microbes, plants, and animals for biosynthetic enzymes capable of producing bioactive compounds. Several orthogonal genome mining strategies have been developed in recent years to target specific chemical features or biological properties of bioactive molecules using biosynthetic, resistance, or transporter proteins. These "biosynthetic hooks" allow researchers to query for biosynthetic gene clusters with a high probability of encoding previously undiscovered, bioactive compounds. This review highlights recent case studies that feature orthogonal approaches that exploit genomic information to specifically discover bioactive natural products and their gene clusters.
Project description:The enediyne family of natural products has had a profound impact on modern chemistry, biology, and medicine, and yet only 11 enediynes have been structurally characterized to date. Here we report a genome survey of 3,400 actinomycetes, identifying 81 strains that harbor genes encoding the enediyne polyketide synthase cassettes that could be grouped into 28 distinct clades based on phylogenetic analysis. Genome sequencing of 31 representative strains confirmed that each clade harbors a distinct enediyne biosynthetic gene cluster. A genome neighborhood network allows prediction of new structural features and biosynthetic insights that could be exploited for enediyne discovery. We confirmed one clade as new C-1027 producers, with a significantly higher C-1027 titer than the original producer, and discovered a new family of enediyne natural products, the tiancimycins (TNMs), that exhibit potent cytotoxicity against a broad spectrum of cancer cell lines. Our results demonstrate the feasibility of rapid discovery of new enediynes from a large strain collection. IMPORTANCE:Recent advances in microbial genomics clearly revealed that the biosynthetic potential of soil actinomycetes to produce enediynes is underappreciated. A great challenge is to develop innovative methods to discover new enediynes and produce them in sufficient quantities for chemical, biological, and clinical investigations. This work demonstrated the feasibility of rapid discovery of new enediynes from a large strain collection. The new C-1027 producers, with a significantly higher C-1027 titer than the original producer, will impact the practical supply of this important drug lead. The TNMs, with their extremely potent cytotoxicity against various cancer cells and their rapid and complete cancer cell killing characteristics, in comparison with the payloads used in FDA-approved antibody-drug conjugates (ADCs), are poised to be exploited as payload candidates for the next generation of anticancer ADCs. Follow-up studies on the other identified hits promise the discovery of new enediynes, radically expanding the chemical space for the enediyne family.
Project description:Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as bleomycin. Recently, an innovative mass-spectrometry-based strategy, peptidogenomics, has been pioneered to effectively mine microbial strains for novel peptidic metabolites. Even though mass-spectrometric peptide detection can be performed quite fast, true high-throughput natural product discovery approaches have still been limited by the inability to rapidly match the identified tandem mass spectra to the gene clusters responsible for the biosynthesis of the corresponding compounds. With Pep2Path, we introduce a software package to fully automate the peptidogenomics approach through the rapid Bayesian probabilistic matching of mass spectra to their corresponding biosynthetic gene clusters. Detailed benchmarking of the method shows that the approach is powerful enough to correctly identify gene clusters even in data sets that consist of hundreds of genomes, which also makes it possible to match compounds from unsequenced organisms to closely related biosynthetic gene clusters in other genomes. Applying Pep2Path to a data set of compounds without known biosynthesis routes, we were able to identify candidate gene clusters for the biosynthesis of five important compounds. Notably, one of these clusters was detected in a genome from a different subphylum of Proteobacteria than that in which the molecule had first been identified. All in all, our approach paves the way towards high-throughput discovery of novel peptidic natural products. Pep2Path is freely available from http://pep2path.sourceforge.net/, implemented in Python, licensed under the GNU General Public License v3 and supported on MS Windows, Linux and Mac OS X.
Project description:More than 60% of pharmaceuticals are related to natural products (NPs), chemicals produced by living organisms. Despite this, the rate of NP discovery has slowed over the past few decades. In many cases the rate-limiting step in NP discovery is structural characterization. Here we report the use of microcrystal electron diffraction (MicroED), an emerging cryogenic electron microscopy (CryoEM) method, in combination with genome mining to accelerate NP discovery and structural elucidation. As proof of principle we rapidly determine the structure of a new 2-pyridone NP, Py-469, and revise the structure of fischerin, an NP isolated more than 25 years ago, with potent cytotoxicity but hitherto ambiguous structural assignment. This study serves as a powerful demonstration of the synergy of MicroED and synthetic biology in NP discovery, technologies that when taken together will ultimately accelerate the rate at which new drugs are discovered.
Project description:Phosphonate natural products are renowned for inhibitory activities which underly their development as antibiotics and pesticides. Although most phosphonate natural products have been isolated from Streptomyces, bioinformatic surveys suggest that many other bacterial genera are replete with similar biosynthetic potential. While mining actinobacterial genomes, we encountered a contaminated Mycobacteroides data set which included a biosynthetic gene cluster predicted to produce novel phosphonate compounds. Sequence deconvolution revealed that the contig containing this cluster, as well as many others, belonged to a contaminating Bacillus and is broadly conserved among multiple species, including the epiphyte Bacillus velezensis. Isolation and structure elucidation revealed a new di- and tripeptide composed of l-alanine and a C-terminal l-phosphonoalanine which we name phosphonoalamides E and F. These compounds exhibit broad-spectrum antibacterial activity, including strong inhibition against the agricultural pests responsible for vegetable soft rot (Erwinia rhapontici), onion rot (Pantoea ananatis), and American foulbrood (Paenibacillus larvae). This work expands our knowledge of phosphonate metabolism and underscores the importance of including underexplored microbial taxa in natural product discovery. IMPORTANCE Phosphonate natural products produced by bacteria have been a rich source of clinical antibiotics and commercial pesticides. Here, we describe the discovery of two new phosphonopeptides produced by B. velezensis with antibacterial activity against human and plant pathogens, including those responsible for widespread soft rot in crops and American foulbrood. Our results provide new insight on the natural chemical diversity of phosphonates and suggest that these compounds could be developed as effective antibiotics for use in medicine or agriculture.
Project description:The small-molecule biosynthetic potential of most filamentous fungi has remained largely unexplored and represents an attractive source for the discovery of new compounds. Genome sequencing of Calcarisporium arbuscula, a mushroom-endophytic fungus, revealed 68 core genes that are involved in natural product biosynthesis. This is in sharp contrast to the predominant production of the ATPase inhibitors aurovertin?B and D in the wild-type fungus. Inactivation of a histone H3 deacetylase led to pleiotropic activation and overexpression of more than 75?% of the biosynthetic genes. Sampling of the overproduced compounds led to the isolation of ten compounds of which four contained new structures, including the cyclic peptides arbumycin and arbumelin, the diterpenoid arbuscullic acid?A, and the meroterpenoid arbuscullic acid?B. Such epigenetic modifications therefore provide a rapid and global approach to mine the chemical diversity of endophytic fungi.
Project description:Lead generation for difficult-to-drug targets that have large, featureless, and highly lipophilic or highly polar and/or flexible binding sites is highly challenging. Here, we describe how cores of macrocyclic natural products can serve as a high-quality in silico screening library that provides leads for difficult-to-drug targets. Two iterative rounds of docking of a carefully selected set of natural-product-derived cores led to the discovery of an uncharged macrocyclic inhibitor of the Keap1-Nrf2 protein-protein interaction, a particularly challenging target due to its highly polar binding site. The inhibitor displays cellular efficacy and is well-positioned for further optimization based on the structure of its complex with Keap1 and synthetic access. We believe that our work will spur interest in using macrocyclic cores for in silico-based lead generation and also inspire the design of future macrocycle screening collections.
Project description:Covering: 2000 to 2015. While recent breakthroughs in the discovery of peptide antibiotics and other Peptidic Natural Products (PNPs) raise a challenge for developing new algorithms for their analyses, the computational technologies for high-throughput PNP discovery are still lacking. We discuss the computational bottlenecks in analyzing PNPs and review recent advances in genome mining, peptidogenomics, and spectral networks that are now enabling the discovery of new PNPs via mass spectrometry. We further describe the connections between these advances and the new generation of software tools for PNP dereplication, de novo sequencing, and identification.