Project description:Olfactory systems are one of the most conserved and ancient sensory systems in vertebrates. The vertebrate olfactory epithelium is colonized by complex communities of commensal microorganisms, but their impact on olfactory epithelial development and function remains unknown. Using germ-free mouse model, we aim to understand the transcriptional responses that colonization with a microbiota induces in olfactory organs. This study was aimed to understand the changes in gene expression in the nose of Germ Free (GF) mice compared to conventionalized (ConvD) mice. This experiment is related to E-MTAB-5045 (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5045)
Project description:Many functions in host���microbiota interactions are potentially influenced by intestinal transit times, but little is known about the effects of altered transition times on the composition and functionality of gut microbiota. To analyze these effects, we cultivated the model community SIHUMIx in bioreactors in order to determine the effects of varying transit times (TT) on the community structure and function. After five days of continuous cultivation, we investigated the influence of different medium TT of 12 h, 24 h, and 48 h. For profiling the microbial community, we applied flow cytometric fingerprinting and revealed changes in the community structure of SIHUMIx during the change of TT, which were not associated with changes in species abundances. For pinpointing metabolic alterations, we applied metaproteomics and metabolomics and found, along with shortening the TT, a slight decrease in glycan biosynthesis, carbohydrate, and amino acid metabolism and, furthermore, a reduction in butyrate, methyl butyrate, isobutyrate, valerate, and isovalerate concentrations. Specifically, B. thetaiotaomicron was identified to be affected in terms of butyrate metabolism. However, communities could recover to the original state afterward. This study shows that SIHUMIx showed high structural stability when TT changed���even four-fold. Resistance values remained high, which suggests that TTs did not interfere with the structure of the community to a certain degree.
Project description:Compare with the gastric cavity without cancerous transformation in atrophic gastritis, analyze the microbiota and metabolomics changes in intestinal type of gastric cancer under the background of atrophic gastritis, and explore the relevant mechanisms.
Project description:The human gut microbiota is a complex microbial community with critical functions for the host, including the transformation of various chemicals. While effects on microorganisms has been evaluated using single-species models, their functional effects within more complex microbial communities remain unclear. In this study, we investigated the response of a simplified human gut microbiota model (SIHUMIx) cultivated in an in vitro bioreactor system in combination with 96 deep-well plates after exposure to 90 different xenobiotics, comprising 54 plant protection products and 36 food additives and dyes, at environmentally relevant concentrations. We employed metaproteomics and metabolomics to evaluate changes in bacterial abundances, the production of Short Chain Fatty Acids (SCFAs), and the regulation of metabolic pathways. Our findings unveiled significant changes induced by 23 out of 54 plant protection products and 28 out of 36 food additives across all three categories assessed. Notable highlights include azoxystrobin, fluoroxypyr, and ethoxyquin causing a substantial reduction (log2FC <-0.5) in the concentrations of the primary SCFAs: acetate, butyrate, and propionate. Several food additives had significant effects on the relative abundances of bacterial species; for example, acid orange 7 and saccharin led to a 75% decrease in Clostridium butyricum, with saccharin causing an additional 2.5-fold increase in E. coli compared to the control. Furthermore, both groups exhibited up- and down-regulation of various pathways, including those related to the metabolism of amino acids such as histidine, valine, leucine, and isoleucine, as well as bacterial secretion systems and energy pathways like starch, sucrose, butanoate, and pyruvate metabolism. This research introduces an efficient in vitro technique that enables high-throughput screening of the structure and function of a simplified and well-defined human gut microbiota model against 90 chemicals using metaproteomics and metabolomics. We believe this approach will be instrumental in characterizing chemical-microbiota interactions especially important for regulatory chemical risk assessments.
Project description:Despite recent advances, severe acute pancreatitis (SAP) remains an extremely lethal inflammation with limited treatment options. Here, we provide compelling evidence of GV-971 (sodium oligomannate), an anti-Alzheimer's medication, as being a protective agent in various mouse SAP models. Microbiome sequencing, along with fecal microbiota transplantation and mass cytometry technology, unveiled that GV-971 reshapes the gut microbiota, increasing Faecalibacterium populations and modulating both peripheral and intestinal immune systems. A metabolomics analysis of cecal contents from GV-971–treated SAP mice further identified short-chain fatty acids, including propionate and butyrate, as key metabolites in inhibiting macrophage M1 polarization and subsequent lethal inflammation by blocking the MAPK pathway. These findings suggest GV-971 as a promising therapeutic for SAP by targeting the microbiota metabolic immune axis.
Project description:Objective: Roux-Y gastric bypass (RYGB) surgery is a last treatment resort to induce substantial and sustained weight loss in severe obesity. The anatomical rearrangement affects the intestinal microbiota but so far, little information is available how it interferes with microbial functionality and microbial-host interaction independent from weight loss. Design: A RYGB rat model was utilized and compared to sham-operated controls which were kept at matched body weight as RYGB animals by food restriction. We assessed microbial taxonomy by 16S rRNA gene sequencing and functional activity by metaproteomics and metabolomics on microbiota samples collected separately from the ileum, the cecum as well as the colon and separately analysed the lumen and mucus associated microbiota. Results: Altered gut architecture in RYGB strongly affected the occurrence of Actinobacteria, especially Bifidobacteriaceae and Proteobacteria which were increased, whereas Firmicutes were decreased, although Streptococcaceae and Clostridium perfringens were observed at higher abundances. A decrease of conjugated as well as secondary bile acids was observed in the RYGB-gut lumen. In addition the arginine biosynthesis pathway in the microbiota was altered, indicated by the changes in abundance of upstream metabolites and enzymes, resulting in lower levels of arginine and higher levels of aspartate in the colon after RYGB. Conclusion: The anatomical rearrangement in RYGB affects microbiota composition and functionality by changes in amino acid and bile acid metabolism, independent of weight loss. The shift in microbiota taxonomic structure after RYGB may be mediated by the resulting change in composition of the bile acid pool in the gut lumen.