Cleavage of oxidized phospholipids by circulating PLA2 enzymes
Ontology highlight
ABSTRACT: In this study, we have compared relative activities of different PLA2 enzymes by analyzing cleavage of OxPAPC and OxPAPE by diluted plasma in the presence of enzyme inhibitors.
Project description:Ethanol metabolism by liver generates short lived reactive oxygen species that damage liver but also affects distal organs through unknown mechanisms. We hypothesized that dissemination of liver oxidative stress proceeds through release of biologically active oxidized lipids to the circulation. We searched for these by tandem mass spectrometry in plasma of rats fed a Lieber-DeCarli ethanol diet or in patients with established alcoholic liver inflammation, steatohepatitis. We found a severalfold increase in plasma peroxidized phosphatidylcholines, inflammatory and pro-apoptotic oxidatively truncated phospholipids, and platelet-activating factor, a remarkably potent and pleiotropic inflammatory mediator, in rats chronically ingesting ethanol. Circulating peroxidized phospholipids also increased in humans with established steatohepatitis. However, reactive oxygen species generated by liver ethanol catabolism were not directly responsible for circulating oxidized phospholipids because the delayed appearance of these lipids did not correlate with ethanol exposure, hepatic oxidative insult, nor plasma alanine transaminase marking hepatocyte damage. Rather, circulating oxidized lipids correlated with steatohepatitis and tumor necrosis factor-alpha deposition in liver. The organic osmolyte 2-aminoethylsulfonic acid (taurine), which reduces liver endoplasmic reticulum stress and inflammation, even though it is not an antioxidant, abolished liver damage and the increase in circulating oxidized phospholipids. Thus, circulating oxidized phospholipids are markers of developing steatohepatitis temporally distinct from oxidant stress associated with hepatic ethanol catabolism. Previously, circulating markers of the critical transition to pathologic steatohepatitis were unknown. Circulating oxidatively truncated phospholipids are pro-inflammatory and pro-apoptotic mediators with the potential to systemically distribute the effect of chronic ethanol exposure. Suppressing hepatic inflammation, not ethanol catabolism, reduces circulating inflammatory and apoptotic agonists.
Project description:A proteolytic cleavage experiment was performed with the protein Malate dehydrogenase (MDH) and Trypsin protease, to identify early cleavage sites in MDH. Various concentrations of Trypsin (5,000, 10,000 and 100,000 x diluted) were tested and early timepoints taken to detect only few cleavage sites in order to identify the very first events of MDH proteolysis
Project description:Oxidized phospholipids (OxPL) are pro-inflammatory and pro-atherogenic, but their roles in non-alcoholic steatohepatitis (NASH) are unknown. Here, we show that OxPL accumulate in human and murine NASH. Using a transgenic mouse that expresses a functional single chain variable fragment of E06, a natural antibody that neutralizes OxPL, we demonstrate the casual role of OxPL in NASH. Targeting OxPL in hyperlipidemic Ldlr-/- mice decreased multiple aspects of NASH, including steatosis, inflammation, fibrosis, hepatocyte death and progression to hepatocellular carcinoma. Mechanistically, we found that OxPL promote ROS accumulation to induce mitochondrial dysfunction in hepatocytes. Neutralizing OxPL in AMLN diet-fed Ldlr-/- mice reduced oxidative stress, improved hepatic and adipose tissue mitochondrial function and fatty acid oxidation. Since neutralizing OxPL also protects against atherogenesis, targeting OxPL may be an effective therapeutic strategy for both NASH and atherosclerosis.
Project description:Low-density lipoprotein receptor-related protein 6 (LRP6) is a co-receptor for Wnt signaling and can be recruited by multiple growth factors/hormones to their receptors facilitating intracellular signaling activation. The ligands that bind directly to LRP6 have not been identified. Here, we report that bioactive oxidized phospholipids (oxPLs) are native ligands of LRP6, but not the closely related LRP5. oxPLs are products of lipid oxidation involving in pathological conditions such as hyperlipidemia, atherosclerosis, and inflammation. We found that cell surface LRP6 in bone marrow mesenchymal stromal cells (MSCs) decreased rapidly in response to increased oxPLs in marrow microenvironment. LRP6 directly bound and mediated the uptake of oxPLs by MSCs. oxPL-LRP6 binding induced LRP6 endocytosis through a clathrin-mediated pathway, decreasing responses of MSCs to osteogenic factors and diminishing osteoblast differentiation ability. Thus, LRP6 functions as a receptor and molecular target of oxPLs for their adverse effect on MSCs, revealing a potential mechanism underlying atherosclerosis-associated bone loss.
Project description:Oxidized phospholipids (OxPLs), which arise due to oxidative stress, are proinflammatory and proatherogenic, but their roles in non-alcoholic steatohepatitis (NASH) are unknown. Here, we show that OxPLs accumulate in human and mouse NASH. Using a transgenic mouse that expresses a functional single-chain variable fragment of E06, a natural antibody that neutralizes OxPLs, we demonstrate the causal role of OxPLs in NASH. Targeting OxPLs in hyperlipidemic Ldlr-/- mice improved multiple aspects of NASH, including steatosis, inflammation, fibrosis, hepatocyte death, and progression to hepatocellular carcinoma. Mechanistically, we found that OxPLs promote ROS accumulation to induce mitochondrial dysfunction in hepatocytes. Neutralizing OxPLs in AMLN-diet-fed Ldlr-/- mice reduced oxidative stress, improved hepatic and adipose-tissue mitochondrial function, and fatty-acid oxidation. These results suggest targeting OxPLs may be an effective therapeutic strategy for NASH.
Project description:Elevated levels of lysophosphatidylcholine (lysoPC), present in oxidatively damaged low-density lipoprotein (oxLDL), are implicated in cardiovascular complications. LysoPC is generated by free radical-catalyzed oxidation of polyunsaturated PCs to oxidatively truncated phosphophatidylcholines (oxPCs). It is known that oxPCs are especially susceptible to hydrolysis by platelet-activating factor acetylhydrolase, a phospholipase (PL) A(2) that exists in plasma largely in association with LDL. Drugs that aim to prevent the generation of lysoPC by inhibiting this PLA(2)-catalyzed hydrolysis are in advanced clinical trials. We now report that spontaneous deacylation oxPCs, such as 1-palmityl-2-(4-hydroxy-7-oxo-5-heptenoyl)-sn-glycero-3-phosphocholine, occurs readily under physiological conditions of temperature and pH (t(1/2) = 30 min at 37 °C and pH 7.4). We also show that this reaction proceeds through an intramolecular transesterification mechanism. Because antiphospholipase drugs cannot block this nonenzymatic pathway to lysoPC, additional therapeutic measures may be needed to avoid the pathological consequences of the newly discovered biomolecular chemistry of oxPCs.
Project description:Pathogen-associated molecular patterns (PAMPs) have the capacity to couple inflammatory gene expression to changes in macrophage metabolism, both of which influence subsequent inflammatory activities. Similar to their microbial counterparts, several self-encoded damage-associated molecular patterns (DAMPs) induce inflammatory gene expression. However, whether this symmetry in host responses between PAMPs and DAMPs extends to metabolic shifts is unclear. Here, we report that the self-encoded oxidized phospholipid oxPAPC alters the metabolism of macrophages exposed to lipopolysaccharide. While cells activated by lipopolysaccharide rely exclusively on glycolysis, macrophages exposed to oxPAPC also use mitochondrial respiration, feed the Krebs cycle with glutamine, and favor the accumulation of oxaloacetate in the cytoplasm. This metabolite potentiates interleukin-1β production, resulting in hyperinflammation. Similar metabolic adaptions occur in vivo in hypercholesterolemic mice and human subjects. Drugs that interfere with oxPAPC-driven metabolic changes reduce atherosclerotic plaque formation in mice, thereby underscoring the importance of DAMP-mediated activities in pathophysiological conditions.
Project description:Oxidized phospholipids (OxPL) are ubiquitous, are formed in many inflammatory tissues, including atherosclerotic lesions, and frequently mediate proinflammatory changes 1 . Because OxPL are mostly the products of non-enzymatic lipid peroxidation, mechanisms to specifically neutralize them are unavailable and their roles in vivo are largely unknown. We previously cloned the IgM natural antibody E06, which binds to the phosphocholine headgroup of OxPL, and blocks the uptake of oxidized low-density lipoprotein (OxLDL) by macrophages and inhibits the proinflammatory properties of OxPL2-4. Here, to determine the role of OxPL in vivo in the context of atherogenesis, we generated transgenic mice in the Ldlr-/- background that expressed a single-chain variable fragment of E06 (E06-scFv) using the Apoe promoter. E06-scFv was secreted into the plasma from the liver and macrophages, and achieved sufficient plasma levels to inhibit in vivo macrophage uptake of OxLDL and to prevent OxPL-induced inflammatory signalling. Compared to Ldlr-/- mice, Ldlr -/- E06-scFv mice had 57-28% less atherosclerosis after 4, 7 and even 12 months of 1% high-cholesterol diet. Echocardiographic and histologic evaluation of the aortic valves demonstrated that E06-scFv ameliorated the development of aortic valve gradients and decreased aortic valve calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased inflammatory phenotype. Serum amyloid A was decreased by 32%, indicating decreased systemic inflammation, and hepatic steatosis and inflammation were also decreased. Finally, the E06-scFv prolonged life as measured over 15 months. Because the E06-scFv lacks the functional effects of an intact antibody other than the ability to bind OxPL and inhibit OxLDL uptake in macrophages, these data support a major proatherogenic role of OxLDL and demonstrate that OxPL are proinflammatory and proatherogenic, which E06 counteracts in vivo. These studies suggest that therapies inactivating OxPL may be beneficial for reducing generalized inflammation, including the progression of atherosclerosis, aortic stenosis and hepatic steatosis.