Project description:Long wavelength Ultraviolet (UVA-1) radiation causes oxidative stress that leads to the formation of noxious substances within the skin. As a defensive mechanism skin cells produce detoxifying enzymes and antioxidants when they detect modified molecules. We have recently shown that UVA-1 irradiation oxidizes the abundant membrane phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), which then induced the synthesis of the stress response protein heme oxygenase 1 (HO-1) in dermal fibroblasts. Here we examined the effects of UVA-1 and (UV-) oxidized phospholipids on the global gene expression in human dermal fibroblasts. We identified a cluster of genes that were co-induced by UVA-1-oxidized PAPC and UVA-1 radiation. The cluster included HO-1, glutamate-cysteine ligase modifier subunit (GCLM), aldo-keto reductases-1-C1 and -C2 (AKR1C1, AKR1C2), and interleukin 8 (IL8). These genes are members of the cellular stress response system termed âantioxidant responseâ or âPhase II detoxificationâ. Accordingly, the regulatory regions of all these genes contain binding sites for NF-E2-related factor 2 (Nrf2), a major regulator of the antioxidant response. Both UVA-1 irradiation and treatment with oxidized lipids led to increased nuclear accumulation of Nrf2. Silencing expression of Nrf2 using siRNA or using cells and tissue from Nrf2-deficient mice, we show that the induction of the co-regulated genes was suppressed. Expression of other canonical UVA-1-induced genes, including cyclooxygenase 2 (Cox2) and interleukin 6 (IL6) was unaltered in the absence of Nrf2. Together, our data show that UVA-1-mediated lipid oxidation induces induction of antioxidant response genes, which is dependent on the redox-regulated transcription factor Nrf2. To activate Nrf2 is a major strategy for novel antioxidant drugs, the skin photo-adaptation (SPA) inducers. Our finding that specific uv-oxidized lipids act similar sheds a new (ultraviolet) light on the usually detrimental âimageâ of UV generated lipid mediators. Experiment Overall Design: we profiled global mRNA expression levels in human dermal fibroblasts that had been treated with either UVA-1 or oxidized lipids. To investigate the effect of oxidized phospholipids on gene regulation, we used two preparations, which differed in their degree of oxidation; the minimally oxidized UV-PAPC resulting from UVA-1 irradiation of PAPC, and air-oxidized PAPC (OxPAPC), which represents the full spectrum of oxidation products (Gruber 07) (Reis et al., 2005). We irradiated dermal fibroblasts with UVA-1 (40J/cm²) or treated them with UV-PAPC, OxPAPC or native PAPC (100µg/ml each). We analyzed global gene expression four hours after stimulation with gene arrays (Affymetrix U133A Plus 2.0 Gene Chips).
Project description:Lipids comprise 70% of the myelin sheath, and autoantibodies against lipids may contribute to the demyelination that characterizes multiple sclerosis (MS). We used lipid antigen microarrays and lipid mass spectrometry to identify bona fide lipid targets of the autoimmune response in MS brain and an animal model of MS to explore the role of the identified lipids in autoimmune demyelination. We found that autoantibodies in MS target a phosphate group in phosphatidylserine and oxidized phosphatidylcholine derivatives. Administration of these lipids ameliorated experimental autoimmune encephalomyelitis by suppressing activation and inducing apoptosis of autoreactive T cells, effects mediated by the lipids' saturated fatty-acid side chains. Thus, phospholipids represent a natural anti-inflammatory class of compounds that have potential as novel therapeutics for MS.
Project description:Lipids comprise 70% of the myelin sheath, and autoantibodies against lipids may contribute to the demyelination that characterizes multiple sclerosis (MS). We used lipid antigen microarrays and lipid mass spectrometry to identify bona fide lipid targets of the autoimmune response in MS brain and an animal model of MS to explore the role of the identified lipids in autoimmune demyelination. We found that autoantibodies in MS target a phosphate group in phosphatidylserine and oxidized phosphatidylcholine derivatives. Administration of these lipids ameliorated experimental autoimmune encephalomyelitis by suppressing activation and inducing apoptosis of autoreactive T cells, effects mediated by the lipids' saturated fatty-acid side chains. Thus, phospholipids represent a natural anti-inflammatory class of compounds that have potential as novel therapeutics for MS.
Project description:Lipids comprise 70% of the myelin sheath, and autoantibodies against lipids may contribute to the demyelination that characterizes multiple sclerosis (MS). We used lipid antigen microarrays and lipid mass spectrometry to identify bona fide lipid targets of the autoimmune response in MS brain and an animal model of MS to explore the role of the identified lipids in autoimmune demyelination. We found that autoantibodies in MS target a phosphate group in phosphatidylserine and oxidized phosphatidylcholine derivatives. Administration of these lipids ameliorated experimental autoimmune encephalomyelitis by suppressing activation and inducing apoptosis of autoreactive T cells, effects mediated by the lipids' saturated fatty-acid side chains. Thus, phospholipids represent a natural anti-inflammatory class of compounds that have potential as novel therapeutics for MS.
Project description:Lipids comprise 70% of the myelin sheath, and autoantibodies against lipids may contribute to the demyelination that characterizes multiple sclerosis (MS). We used lipid antigen microarrays and lipid mass spectrometry to identify bona fide lipid targets of the autoimmune response in MS brain and an animal model of MS to explore the role of the identified lipids in autoimmune demyelination. We found that autoantibodies in MS target a phosphate group in phosphatidylserine and oxidized phosphatidylcholine derivatives. Administration of these lipids ameliorated experimental autoimmune encephalomyelitis by suppressing activation and inducing apoptosis of autoreactive T cells, effects mediated by the lipids' saturated fatty-acid side chains. Thus, phospholipids represent a natural anti-inflammatory class of compounds that have potential as novel therapeutics for MS. Fig. 2A. Mini-Array I: IgG antibody reactivity to various glycero-3-phosphocholine lipids in CSF samples from patients with relapsing remitting MS and from control patients with other neurological disease. Lipid hits with the lowest FDR (q=0.029) were clustered according to their reactivity profiles. 47 different lipids were custom-spotted in duplicate using the CAMAG Automatic TLC Sampler (ATS4) robot to spray 200 nl of 10 to 100 pmol of lipids onto PVDF membranes affixed to the surface of microscope slides. The slides were probed with cerebrospinal fluid (CSF) from 24 human patient samples. 25 slides total: 13 relapsing-remitting MS, 11 other neurological disease, and 1 secondary Ab alone (not included in this submission). CSF diluted 1/20. HRP-conjugated secondary Ab (goat anti-human IgM/IgG) diluted 1/175. ECL for 3 minutes.
Project description:Lipids comprise 70% of the myelin sheath, and autoantibodies against lipids may contribute to the demyelination that characterizes multiple sclerosis (MS). We used lipid antigen microarrays and lipid mass spectrometry to identify bona fide lipid targets of the autoimmune response in MS brain and an animal model of MS to explore the role of the identified lipids in autoimmune demyelination. We found that autoantibodies in MS target a phosphate group in phosphatidylserine and oxidized phosphatidylcholine derivatives. Administration of these lipids ameliorated experimental autoimmune encephalomyelitis by suppressing activation and inducing apoptosis of autoreactive T cells, effects mediated by the lipids' saturated fatty-acid side chains. Thus, phospholipids represent a natural anti-inflammatory class of compounds that have potential as novel therapeutics for MS. Fig. 2C. Mini-Array II: IgG antibody reactivity to lipids constituting polar head-group and side-chain modifications of PGPC in CSF samples from relapsing remitting MS patients and other neurological disease controls. Lipid hits with the lowest FDR (q=0.016) were clustered according to their reactivity profiles. 19 different lipids were custom-spotted in duplicate using the CAMAG Automatic TLC Sampler (ATS4) robot to spray 200 nl of 10 to 100 pmol of lipids onto PVDF membranes affixed to the surface of microscope slides. The slides were probed with cerebrospinal fluid (CSF) from 26 human patient samples. 27 slides total: 12 relapsing-remitting MS, 13 other neurological disease, 1 healthy control (not included in this submission), and 1 secondary Ab alone (not included in this submission). CSF diluted 1/20. HRP-conjugated secondary Ab (donkey anti-human IgG) diluted 1/8000. ECL for 3 minutes.
Project description:Lipids comprise 70% of the myelin sheath, and autoantibodies against lipids may contribute to the demyelination that characterizes multiple sclerosis (MS). We used lipid antigen microarrays and lipid mass spectrometry to identify bona fide lipid targets of the autoimmune response in MS brain and an animal model of MS to explore the role of the identified lipids in autoimmune demyelination. We found that autoantibodies in MS target a phosphate group in phosphatidylserine and oxidized phosphatidylcholine derivatives. Administration of these lipids ameliorated experimental autoimmune encephalomyelitis by suppressing activation and inducing apoptosis of autoreactive T cells, effects mediated by the lipids' saturated fatty-acid side chains. Thus, phospholipids represent a natural anti-inflammatory class of compounds that have potential as novel therapeutics for MS. Fig. 1A. Lipid-array profiling of IgG+IgM antibody reactivity in cerebrospinal fluid (CSF) samples from MS patients (relapsing remitting MS; secondary progressive MS; primary progressive MS), healthy controls, and other neurological disease controls. Lipid hits with the lowest FDR (q=0.048) were clustered according to their reactivity profiles. 48 different lipids were custom-spotted in duplicate using the CAMAG Automatic TLC Sampler (ATS4) robot to spray 200 nl of 10 to 100 pmol of lipids onto PVDF membranes affixed to the surface of microscope slides. The slides were probed with cerebrospinal fluid (CSF) from 59 human patient samples. 60 slides total: 18 relapsing-remitting MS, 14 secondary-progressive MS, 1 primary-progressive MS, 21 other neurological disease, 5 healthy control, 1 secondary Ab alone (not included in this submission). CSF diluted 1/10. HRP-conjugated secondary Ab (goat anti-human IgM/IgG) diluted 1/8000. ECL for 3 minutes.
Project description:Long wavelength Ultraviolet (UVA-1) radiation causes oxidative stress that leads to the formation of noxious substances within the skin. As a defensive mechanism skin cells produce detoxifying enzymes and antioxidants when they detect modified molecules. We have recently shown that UVA-1 irradiation oxidizes the abundant membrane phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), which then induced the synthesis of the stress response protein heme oxygenase 1 (HO-1) in dermal fibroblasts. Here we examined the effects of UVA-1 and (UV-) oxidized phospholipids on the global gene expression in human dermal fibroblasts. We identified a cluster of genes that were co-induced by UVA-1-oxidized PAPC and UVA-1 radiation. The cluster included HO-1, glutamate-cysteine ligase modifier subunit (GCLM), aldo-keto reductases-1-C1 and -C2 (AKR1C1, AKR1C2), and interleukin 8 (IL8). These genes are members of the cellular stress response system termed “antioxidant response” or “Phase II detoxification”. Accordingly, the regulatory regions of all these genes contain binding sites for NF-E2-related factor 2 (Nrf2), a major regulator of the antioxidant response. Both UVA-1 irradiation and treatment with oxidized lipids led to increased nuclear accumulation of Nrf2. Silencing expression of Nrf2 using siRNA or using cells and tissue from Nrf2-deficient mice, we show that the induction of the co-regulated genes was suppressed. Expression of other canonical UVA-1-induced genes, including cyclooxygenase 2 (Cox2) and interleukin 6 (IL6) was unaltered in the absence of Nrf2. Together, our data show that UVA-1-mediated lipid oxidation induces induction of antioxidant response genes, which is dependent on the redox-regulated transcription factor Nrf2. To activate Nrf2 is a major strategy for novel antioxidant drugs, the skin photo-adaptation (SPA) inducers. Our finding that specific uv-oxidized lipids act similar sheds a new (ultraviolet) light on the usually detrimental “image” of UV generated lipid mediators.
Project description:Ultraviolet light is the dominant environmental oxidative skin stressor and a major skin aging factor. We studied which oxidized phospholipid (OxPL) mediators Ultraviolet A (UVA) would generate in primary human keratinocytes (KC). Mass spectrometric analysis of the oxidized phospholipidome of KC immediately or 24h post stress revealed dynamic changes in abundance of 174 oxidized phosphocholine species. Exposure to UVA and to in vitro UVA - oxidized phospholipids both activated, on transcriptome and proteome level, NRF2/antioxidant response signaling and lipid metabolizing enzyme expression, whereas UVA additionally initiated the unfolded protein response (UPR). We identified Nupr1 as an upstream transcriptional regulator of UVA/OxPL mediated gene expression that is itself transcriptionally regulated by reactive lipids, which also aggregate and crosslink recombinant Nupr1 protein. Nupr1 governs the basal and stress regulated expression of cell cycle, redox reactive, autophagy- and lipid metabolizing genes in epidermal keratinocytes, making it a potential key factor in skin ROS responses, -aging and -pathology.
Project description:Dysregulated lipid metabolism is a prominent feature of prostate cancer that is driven by androgen receptor (AR) signaling. Here we used quantitative mass spectrometry to define the “lipidome” in prostate tumors with matched benign tissues (n=21), independent unmatched tissues (n=47), and primary prostate explants cultured with the clinical AR antagonist enzalutamide (n=43). Significant differences in lipid composition were detected and spatially visualized in tumors compared to matched benign samples. Notably, tumors featured higher proportions of monounsaturated lipids overall and elongated fatty acid chains in phosphatidylinositol and phosphatidylserine lipids. Significant associations between lipid profile and malignancy were validated in unmatched samples, and phospholipid composition was characteristically altered in patient tissues that responded to AR inhibition. Importantly, targeting tumor-related lipid features via inhibition of acetyl-CoA carboxylase 1 significantly reduced cellular proliferation and induced apoptosis in tissue explants (n=13). This first characterization of the prostate cancer lipidome in clinical tissues reveals enhanced fatty acid synthesis, desaturation and elongation as tumor-defining features, with potential for therapeutic targeting.