Project description:<p>High-affinity iron (Fe) scavenging compounds, or siderophores, are widely employed by soil bacteria to survive scarcity in bioavailable Fe. Siderophore biosynthesis relies on cellular carbon metabolism, despite reported decrease in both carbon uptake and Fe-containing metabolic proteins in Fe-deficient cells. Given this paradox, the metabolic network required to sustain the Fe-scavenging strategy is poorly understood. Here, through multiple <sup>13</sup>C-metabolomics experiments with Fe-replete and Fe-limited cells, we uncover how soil <em>Pseudomonas</em> species reprogram their metabolic pathways to prioritize siderophore biosynthesis. Across the three species investigated (<em>Pseudomonas putida</em> KT2440, <em>Pseudomonas protegens</em> Pf-5, and <em>Pseudomonas putida</em> S12), siderophore secretion is higher during growth on gluconeogenic substrates than during growth on glycolytic substrates. In response to Fe limitation, we capture decreased flux toward the tricarboxylic acid (TCA) cycle during the metabolism of glycolytic substrates but, due to carbon recycling to the TCA cycle via enhanced anaplerosis, the metabolism of gluconeogenic substrates results in an increase in both siderophore secretion (up to threefold) and Fe extraction (up to sixfold) from soil minerals. During simultaneous feeding on the different substrate types, Fe deficiency triggers a hierarchy in substrate utilization, which is facilitated by changes in protein abundances for substrate uptake and initial catabolism. Rerouted metabolism further promotes favorable fluxes in the TCA cycle and the gluconeogenesis-anaplerosis nodes, despite decrease in several proteins in these pathways, to meet carbon and energy demands for siderophore precursors in accordance with increased proteins for siderophore biosynthesis. Hierarchical carbon metabolism thus serves as a critical survival strategy during the metal nutrient deficiency.</p><p><br></p><p><strong>Data availability:</strong></p><p>The proteomics data have been deposited into the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier <a href='https://www.ebi.ac.uk/pride/archive/projects/PXD013605' rel='noopener noreferrer' target='_blank'>PXD013605</a>.</p>
Project description:Pseudomonas chlororaphis strain 30-84 is an effective biological control agent against take-all disease of wheat. Phenazines, bacterial secondary metabolites produced by 30-84, are essential for 30-84 to inhibit fungal pathogens, form biofilms, and effectively colonize the rhizosphere. However, how the bacteria themselves respond to phenazines remains unknown. In this study, we conducted an RNA-seq analysis by comparing the wild type strain with a phenazine deficient mutant. RNA-seq analysis identified over 200 genes differentially regulated by phenazines. Consistent with previous findings in Pseudomonas aeruginosa PAO1, phenazines positively contribute to the expression of their own biosynthetic genes. Moreover, phenazine regulatory genes including the phzI/phzR quorum sensing system and the rpeB response regulatory were also expressed at high levels in the presence of phenazines. Besides phenazine biosynthesis and regulatory genes, genes involved in secondary metabolism, exopoysaccharide production and iron uptake as well as amino acid transport were identified as the major components under phenazine control, including many novel genes. We have also demonstrated that mutation of the primary siderophore gene pvdA resulted in up-regulation of phenazine genes when grown in iron-limiting media. These findings implicate phenazines as signaling molecules to regulate gene expression and hence alter metabolism in P. chlororaphis strain 30-84. A total of 4 samples were analyzed in AB medium + 2% casamino acids, Pseudomonas chlororaphis wild type strain (2 replicates); Pseudomonas chlororaphis ZN mutant (2 replicates).
Project description:Iron is an essential nutrient for bacterial growth but poorly bioavailable. To scavenge ferric iron present in their environment, bacteria synthesize and secrete siderophores, small compounds with a high affinity for iron. Pyochelin (PCH) is one of the two siderophores produced by the opportunistic pathogen Pseudomonas aeruginosa. Once having captured a ferric iron, PCH-Fe is imported back into bacteria first by the outer membrane transporter FptA and afterwards by the inner membrane permease FptX. Here using molecular biology, 55Fe uptake assays and LC-MS/MS quantification of PCH in the different bacterial cell fractions, we show that (i) PCH (probably under its PCH-Fe form) is able to rich bacterial periplasm and cytoplasm when both FptA and FptX are expressed, and (ii) that PchHI (a heterodimeric ABC transporter) plays a role in the translocation of siderophore-free iron siderophore-free iron across the inner membrane into the cytoplasm. Consequently, probably the first fraction of PCH-Fe internalized by FptA may be transported further by FptX in the bacterial cytoplasm to activate the transcriptional regulator PchR, regulating the transcription of all genes of the PCH pathway. The further fractions of PCH-Fe transported by FptA may dissociate in the bacterial periplasm by an unknown mechanism, with the siderophore-free iron being transported into the cytoplasm by PchHI.
Project description:Pseudomonas chlororaphis strain 30-84 is an effective biological control agent against take-all disease of wheat. Phenazines, bacterial secondary metabolites produced by 30-84, are essential for 30-84 to inhibit fungal pathogens, form biofilms, and effectively colonize the rhizosphere. However, how the bacteria themselves respond to phenazines remains unknown. In this study, we conducted an RNA-seq analysis by comparing the wild type strain with a phenazine deficient mutant. RNA-seq analysis identified over 200 genes differentially regulated by phenazines. Consistent with previous findings in Pseudomonas aeruginosa PAO1, phenazines positively contribute to the expression of their own biosynthetic genes. Moreover, phenazine regulatory genes including the phzI/phzR quorum sensing system and the rpeB response regulatory were also expressed at high levels in the presence of phenazines. Besides phenazine biosynthesis and regulatory genes, genes involved in secondary metabolism, exopoysaccharide production and iron uptake as well as amino acid transport were identified as the major components under phenazine control, including many novel genes. We have also demonstrated that mutation of the primary siderophore gene pvdA resulted in up-regulation of phenazine genes when grown in iron-limiting media. These findings implicate phenazines as signaling molecules to regulate gene expression and hence alter metabolism in P. chlororaphis strain 30-84.