Project description:Human mesenchymal stem cell (MSC)-conditioned medium (CM) was previously reported to affect the biology of tumor cells; however, the precise mechanisms remain unclear. Here, we show that MSCs secreted 40- to 100-nm particles, which have the typical characteristics of exosomes, and these MSC-derived exosomes promoted migration of the breast cancer cell line MCF7. To further investigate the effect of MSC-exosomes on MCF7, we analyzed the gene expression profiles of MCF7 treated with or without MSC-exosomes for 24 h. Investigation of whole genome gene expression level changes in breast cancer cell line MCF7 which were treated with or without mesenchymal stem cell-derived exosomes. This study uses total RNA recovered from two samples. One sample is MCF7 treated with PBS for 24 hours and another one is MCF7 treated with mesenchymal stem cell-derived exosomes for 24hours. The ultimate concentration of mesenchymal stem cell-derived exosomes used in this experiment was 400ng/ul.
Project description:Proteome characterization of mesenchymal stem cells (MSC) and exosomes.
MSCs were cultured in normoxic, hypoxic and in presence of FBS. Exosomes were prepared from normoxic and hypoxic conditions.
Project description:Hypoxic pretreatment of feline fat mesenchymal stem cell-derived exosomes has a good therapeutic effect on feline kidney failure diseases
Project description:Proteome experiment was peformed on exosomes of human minor salivary gland mesenchymal stem cells and adipose-derived stem cells to find out the same points and difference of these two kinds of exosomes, which can hopefully give further guidance on further therapy research
Project description:Adult neural stem cells (aNSCs) show multilineage differentiation potential influenced by intrinsic and extrinsic signaling cues. We and others have shown that stimulation of aNSCs with bone marrow mesenchymal stem cell (MSC) secreted factors substantially enhances in vitro oligodendrogenesis at an expense of astrogenesis by yet unknown mechanisms (Rivera et al. 2006, Jadasz et al. 2013; 2018, Rivera et al., 2019). In the present study, we demonstrate that aNSCs pre-treated with MSC secretomes for different periods in vitro preferentially differentiate to oligodendrocytic cells in vivo after transplantation into the adult rat spinal cord. Analysis of different time points after transplantation revealed a stable survival rate of transplanted aNSCs and an emphasized pro-oligodendroglial differentiation in response to MSC secreted factors. MSC derived secretomes were then analyzed by mass spectrometry-based proteomics and label-free quantification to identify secreted proteins contributing to oligodendroglial lineage fate determination. To exclude possible contaminants derived from dead cells or serum, our approach includes a comparison of the abundances of proteins present in MSC derived secretomes with corresponding proteins in cell lysates (Grube et al., 2018, Schira-Heinen et al., 2019).