Metabolomics

Dataset Information

0

Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms


ABSTRACT: Dynamic environmental factors such as light, nutrients, salt, and temperature continuously affect chlorophototrophic microbial mats, requiring adaptive and acclimative responses to stabilize composition and function. Quantitative metabolomics analysis can provide insights into metabolite dynamics for understanding community response to such changing environmental conditions. In this study, we quantified volatile organic acids, polar metabolites (amino acids, glycolytic and citric acid cycle intermediates, nucleobases, nucleosides, and sugars), wax esters, and polyhydroxyalkanoates, resulting in the identification of 104 metabolites and related molecules in thermal chlorophototrophic microbial mat cores collected over a diel cycle in Mushroom Spring, Yellowstone National Park. A limited number of predominant taxa inhabit this community and their functional potentials have been previously identified through metagenomics and metatranscriptomic analyses and in situ metabolisms, and metabolic interactions among these taxa have been hypothesized. Our metabolomics results confirmed the diel cycling of photorespiration (e.g., glycolate) and fermentation (e.g., acetate, propionate, and lactate) products, the carbon storage polymers polyhydroxyalkanoates, and dissolved gasses (e.g., H2 and CO2) in the waters overlying the mat, which were hypothesized to occur in major mat chlorophototrophic community members. In addition, we have formulated the following new hypotheses: (1) the morning hours are a time of biosynthesis of amino acids, DNA, and RNA; (2) photo-inhibited cells may also produce lactate via fermentation as an alternate metabolism; (3) glycolate and lactate are exchanged among Synechococcus and Roseiflexus spp.; and (4) fluctuations in many metabolite pools (e.g., waxesters) at different times of day result from species found at different depths within the mat responding to temporal differences in their niches.

INSTRUMENT(S): 5975C Series GC/MSD (Agilent)

SUBMITTER: Tom Metz 

PROVIDER: MTBLS187 | MetaboLights | 2024-02-23

REPOSITORIES: MetaboLights

Dataset's files

Source:
Action DRS
MTBLS187 Other
FILES Other
a_MTBLS187_aAcePro.txt Txt
a_MTBLS187_bPolar.txt Txt
a_MTBLS187_cWaxPHA.txt Txt
Items per page:
1 - 5 of 14
altmetric image

Publications

Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms.

Kim Young-Mo YM   Nowack Shane S   Olsen Millie T MT   Becraft Eric D ED   Wood Jason M JM   Thiel Vera V   Klapper Isaac I   Kühl Michael M   Fredrickson James K JK   Bryant Donald A DA   Ward David M DM   Metz Thomas O TO  

Frontiers in microbiology 20150417


Dynamic environmental factors such as light, nutrients, salt, and temperature continuously affect chlorophototrophic microbial mats, requiring adaptive and acclimative responses to stabilize composition and function. Quantitative metabolomics analysis can provide insights into metabolite dynamics for understanding community response to such changing environmental conditions. In this study, we quantified volatile organic acids, polar metabolites (amino acids, glycolytic and citric acid cycle inte  ...[more]

Similar Datasets

2021-07-01 | MODEL2002040004 | BioModels
2021-07-01 | MODEL2002040005 | BioModels
2021-07-01 | MODEL2002040003 | BioModels
2021-07-01 | MODEL2002040006 | BioModels
2021-07-01 | MODEL2002040002 | BioModels
2021-12-02 | E-MTAB-11154 | biostudies-arrayexpress
2022-03-02 | MTBLS3038 | MetaboLights
2020-03-06 | PXD017373 |
2012-07-16 | E-GEOD-35631 | biostudies-arrayexpress
2019-11-26 | GSE131944 | GEO