Project description:In this study, a metaproteomic approach was used for a detailed analysis of the structure of the microbial community, temporal changes and the functional role of the microbiota during pozol fermentation.
Project description:In this study, a metaproteomic approach was used for a detailed analysis of the structure of the microbial community, temporal changes and the functional role of the microbiota during pozol fermentation.
Project description:In this study, a metaproteomic approach was used for a detailed analysis of the structure of the microbial community, temporal changes and the functional role of the microbiota during pozol fermentation.
Project description:The iconic giant panda is an endangered species known worldwide for its peculiar dietary habits. While retaining the digestive system of a carnivore, the giant panda successfully moved into a diet almost exclusively based on bamboo. Digestion of lignocellulose is believed to be conducted solely by its gut microbiome, provided that no lignocellulose-degrading enzyme was found in the giant panda’s genome. Many reports focused on which lignocellulose component feeds the giant panda, while little effort was made to link the products of bamboo fermentation to the panda’s dietary choices. In the present study, fermentation of either green leaves or yellow pith was conducted in the laboratory using gut microbiomes derived from either green or yellow stools, respectively. Green leaves were fermented to ethanol, lactate and acetate, while yellow pith to lactate resembling, respectively, hetero/homo-fermentation patterns. Several microbial pathways (assessed by metaproteomics) related to hemicellulose rather than cellulose degradation. However, alpha-amylases (E.C. 3.2.1.1) from the giant panda itself were the most predominant enzyme (up to 60% of all metaproteins), indicating that they have a primary role in bamboo digestion. The distinct fermentation profiles resulting from digestion of selected portions of bamboo may be part of the feeding strategy of giant pandas.
Project description:This SuperSeries is composed of the following subset Series: GSE8015: Pyruvate fermentation vs Lactate-Sulfate GSE8037: Hydrogen vs Lactate as electron donor in Sulfate reduction GSE8071: Pyruvate vs Lactate as electron donor in Sulfate reduction GSE8072: Thiosulfate vs Sulfate as electron acceptor in Sulfate reduction Keywords: SuperSeries Refer to individual Series
Project description:Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments a broad range of substrates to mainly acetate, CO2, and hydrogen gas (H2). Its high hydrogen-producing capacity make this bacterium an attractive candidate for microbial biohydrogen production. However, increased H2 levels tend to inhibit hydrogen formation and leads to the formation of other reduced end products like lactate and ethanol. To investigate the organism’s strategy for dealing with elevated H2 levels and to identify alternative pathways involved in the disposal of the reducing equivalents, the effect of the hydrogen partial pressure (PH2) on fermentation performance was studied. For this purpose cultures were grown under high and low PH2 in a glucose limited chemostat setup. Transcriptome analysis revealed the up-regulation of genes involved in the disposal of reducing equivalents under high PH2, like lactate dehydrogenase and alcohol dehydrogenase as well as the NADH-dependent and ferredoxin-dependent hydrogenases. These findings were in line with the observed shift in fermentation profiles from acetate production under low PH2 to a mixed production of acetate, lactate and ethanol under high PH2. In addition, differential transcription was observed for genes involved in carbon metabolism, fatty acid biosynthesis and several transport systems. The presented transcription data provides experimental evidence for the involvement of the redox sensing Rex protein in gene regulation under high PH2 cultivation conditions. Overall, these findings indicate that the PH2 dependent changes in the fermentation pattern of C. saccharolyticus are, in addition to the known regulation at the enzyme/metabolite level, also regulated at the transcription level.
Project description:Bioelectrochemical systems employing mixed microbial communities as biocatalysts are gaining importance as potential renewable energy, bioremediation, or biosensing devices. While we are beginning to understand how individual microorganism species interact with an electrode as electron donor, not much is known about the interactions between different microbial species in a community. Here, we compare the bioelectrochemical performance of Shewanella oneidensis in a pure-culture and in a co-culture with the homolactic acid fermenter Lactococcus lactis. While S. oneidensis alone can only use lactate as electron donor for current production, the co-culture is able to convert glucose into current with a similar coulombic efficiency of approximately 17%, respectively. With (electro)-chemical analysis and transcription profiling, we found that the BES performance and S. oneidensis physiology were not significantly different whether grown as a pure- or co-culture. These co-culture experiments represent a first step in understanding microbial interactions in BES communities with the goal to design complex microbial communities, which specifically convert target substrates into electricity. Further, for the first time, we elucidated S. oneidensis gene expression with an electrode as the only electron acceptor. The expression pattern confirms many previous studies regarding the enzymatic requirements for electrode respiration, and it generates new hypotheses on the functions of proteins, which are so far not known to be involved in electrode respiration. The BES was either operated with S. oneidensis alone, fed with lactate, or it was operated with S. oneidensis and L. lactis with glucose as primary substrate. The basic medium was a modified M4 medium containing 0.5 g/L yeast extract, 0.5 g/L trypton and 5 g/L glycerol phosphate, besides the commen M4 incredients. S. oneidensis oxidizes lactate to acetate and electrons in a BES - the latter generate a current at a graphite anode. The anode biofilm was harvested after about 4 weeks of continuous BES operation and subjected to total RNA extraction.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3) Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Microbial community structure was determined using PhyoChio (G3)
Project description:The microbiota plays a crucial role in protecting plants from pests and pathogens. The protection provided by the microbiota constitutes not just the plant’s first line of defense, but possibly its most potent one, as experimental disruptions to the microbiota cause plants to succumb to otherwise asymptomatic infections. To understand how microbial plant defense is deployed, we applied a complex and tractable plant-soil-microbiome microcosm. This system, consisting of Arabidopsis plants and a 150-member bacterial synthetic community, provides a platform for the discovery of novel bacterial plant-beneficial traits, under a realistically complex microbial community context. To identify which components of the plant microbiota are critical for plant defense, we deconstructed this microcosm top-down, removing different microbial groups from the community to examine their protective effect on the plant when challenged with the leaf pathogen Pseudomonas syringae. This process of community deconstruction revealed a critical role for the genus Bacillus in protecting the plant from infection. Using plant RNA-seq and bacterial co-culturing experiments, we demonstrated that Bacillus-provided plant protection is independent of plant immune system activation. We also show that the level of plant protection is strongly dependent on the diversity of the protective inoculum. We show that deconstructing the microbiome top-down is a powerful tool for identifying and prioritizing microbial taxa with specific functions within it.
Project description:The microbial community and enzymes in fermented rice using defined microbial starter, containing Rhizopus oryzae, Saccharomycopsis fibuligera, Saccharomyces cerevisiae and Pediococcus pentosaceus, play an important role in quality of the fermented rice product and its biological activities including melanogenesis inhibitory activity. The microbial metaproteome revealed large-scale proteins expressed by the microbial community to better understand the role of microbiota in the fermented rice.