Metabolomics

Dataset Information

0

Fatty acid oxidation protects cancer cells from apoptosis through increasing mitochondrial membrane lipids


ABSTRACT:

Overcoming resistance to chemotherapies remains a major unmet need for cancers such as triple negative breast cancer (TNBC). Therefore, mechanistic studies to provide insight for drug development are urgently needed to overcome TNBC therapy resistance. Recently, an important role of fatty acid β-Oxidation (FAO) in chemoresistance has been shown. But how FAO might mitigate tumor cell apoptosis by chemotherapy is unclear. Here, we show that elevated FAO activates STAT3 by acetylation via elevated acetyl-CoA. Acetylated STAT3 upregulates expression of long-chain acyl-CoA synthetase 4 (ACSL4), resulting in increased phospholipid synthesis. Elevating phospholipids in mitochondrial membranes leads to heightened mitochondrial integrity, which in turn overcomes chemotherapy-induced tumor cell apoptosis. Conversely, in both cultured tumor cells and xenograft tumors, enhanced cancer cell apoptosis by inhibiting ASCL4 or specifically targeting acetylated-STAT3 is associated with a reduction in phospholipids within mitochondrial membranes. This study demonstrates a critical mechanism underlying tumor cell chemoresistance.

INSTRUMENT(S): Liquid Chromatography MS - positive - reverse phase

SUBMITTER: Yi-Jia Li 

PROVIDER: MTBLS4709 | MetaboLights | 2022-05-31

REPOSITORIES: MetaboLights

Dataset's files

Source:
Action DRS
MTBLS4709 Other
FILES Other
a_MTBLS4709_LC-MS_positive_reverse-phase_metabolite_profiling.txt Txt
files-all.json Other
i_Investigation.txt Txt
Items per page:
1 - 5 of 7

Similar Datasets

2022-05-31 | GSE201052 | GEO
2022-05-31 | GSE201051 | GEO
2011-03-01 | GSE20722 | GEO
2011-03-01 | E-GEOD-20722 | biostudies-arrayexpress
2018-10-18 | GSE112147 | GEO
2019-12-01 | GSE125511 | GEO
2013-01-01 | GSE37361 | GEO
2024-11-19 | GSE245580 | GEO
2024-11-19 | GSE245579 | GEO
2024-11-19 | GSE245445 | GEO