A study of changes in lipid metabolism of ovarian cancer cells co-cultured with adipocytes: UHPLC-QTOF MS analysis
Ontology highlight
ABSTRACT: This West Coast Metabolomics Center pilot and feasibility project was granted to Ernst Lengyel (University of Chicago). The biology of ovarian cancer (OvCa) is clearly distinct from that of most epithelial tumors, in that hematogenous metastases are rare, and ovarian tumors remain confined to the peritoneal cavity. The omentum, a large pad of fat tissue (20x13x3cm) covering the bowel, is the most common site of OvCa metastasis. It consists primarily of adipocytes, which become the principal microenvironment for the OvCa cells. The underlying hypothesis for this application is that, in the presence of adipocytes, the metabolism of OvCa cells is reprogramed and shifts towards lipid utilization, which provides energy that facilitates tumor growth and metastasis. Preliminary results suggest that primary human omental adipocytes secrete cytokines which promote the metastasis of OvCa cells to the omentum and their subsequent invasion. Once metastasis has occurred, OvCa cells induce lipolysis in omental adipocytes, and use the energy derived from these lipids to proliferate. To study the metabolic changes in the tumor microenvironment we have established a 3D organotypic culture of the human omentum using primary human cells established from patient tissue. Metabolic studies will be performed on adipocytes and OvCa cells individually, on conditioned media and on adipocytes and OvCa cells co-cultured in our 3D model, with the goal of arriving at a comprehensive analysis of primary metabolites and lipids in the tumor microenvironment. In the current investigation, untargeted analysis of primary metabolites and complex lipids were conducted on adipocytes and OvCa cells individually, on conditioned media and on adipocytes and OvCa cells co-cultured in our 3D model. Analysis of oxylipins was conducted on conditioned media. To gain better understanding of the dynamic regulation of metabolic pathways we will also perform metabolic flux analysis using labeled cells (13C-glucose, 13C-glutamine) in the 3D culture model. The primary objective of this study is to gain insight into the dynamic interactions between OvCa cells and human adipocytes with the anticipation of elucidating targets of therapeutic intervention.
INSTRUMENT(S): QTOF
ORGANISM(S): Human Homo Sapiens
DISEASE(S): Cancer
SUBMITTER: Oliver Fiehn
PROVIDER: ST000089 | MetabolomicsWorkbench | Wed Jun 11 00:00:00 BST 2014
REPOSITORIES: MetabolomicsWorkbench
ACCESS DATA