Project description:Transcriptional profiling of rat liver after a three days caloric restriction or 3 days starvation. In the present study, we wanted to investigate the expression of multiple genes linked to pathways of energy metabolism. We developed a metabolism dedicated microarray tool: the Mitoligo. This microarray gathers genes linked to the main functions of energy metabolism, such as glycolysis or fatty acid oxidation. This biochip has also been designed to study the expression of genes encoding for all the subunits of proteins constituting the ETC. Eventually, genes coding for protein linked to ROS scavenging systems can also be studied using the Mitoligo. Keywords: Nutritional intervention
Project description:Mice were killed between 24 to 26 months of age, tissues removed, rapidly frozen on dry ice, and stored in liquid nitrogen. Total liver RNA was isolated from frozen tissue as described (T. Tsuchiya, J.M. Dhahbi, X. Cui, P.L. Mote, A. Bartke, S.R. Spindler, Physiological Genomics, Submitted). mRNA levels were measured using the Affymetrix mouse U74Av2 array according to standard protocols. After hybridization, arrays were scanned using a Hewlett-Packard GeneArray Scanner. Image analysis was performed as described (Cao SX, Dhahbi JM, Mote PL, and Spindler SR. Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc Natl Acad Sci U S A 98: 10630-10635, 2001). A more detailed description of the methods can be found in (T. Tsuchiya, J.M. Dhahbi, X. Cui, P.L. Mote, A. Bartke, S.R. Spindler, Physiological Genomics, Submitted). This SuperSeries is composed of the SubSeries listed below.
Project description:MicroRNAs are important negative regulators of protein coding gene expression, and have been studied intensively over the last few years. To this purpose, different measurement platforms to determine their RNA abundance levels in biological samples have been developed. In this study, we have systematically compared 12 commercially available microRNA expression platforms by measuring an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples, and synthetic spikes from homologous microRNA family members. We developed novel quality metrics in order to objectively assess platform performance of very different technologies such as small RNA sequencing, RT-qPCR and (microarray) hybridization. We assessed reproducibility, sensitivity, quantitative performance, and specificity. The results indicate that each method has its strengths and weaknesses, which helps guiding informed selection of a quantitative microRNA gene expression platform in function of particular study goals.
Project description:The beneficial effects of caloric restriction (CR) against cardiac aging and for prevention of cardiovascular diseases are numerous. However, to our knowledge, there is no scientific evidence about how a high-calorie diet (HCD) background influences the mechanisms underlying CR in whole heart tissue (WHT) in experimental murine models. In the current study, CR-treated mice with different alimentary backgrounds were subjected to transthoracic echocardiographic measurements. WHT was then analyzed to determine cardiac energetics, telomerase activity, the expression of energy-sensing networks, tissue-specific adiponectin, and cardiac precursor/cardiac stem cell markers. Animals with a balanced diet consumption before CR presented marked cardiac remodeling with improved ejection fraction (EF) and fractional shortening (FS), enhanced OXPHOS complex I, III, and IV, and CKMT2 enzymatic activity. Mice fed an HCD before CR presented moderate changes in cardiac geometry with diminished EF and FS values, but improved OXPHOS complex IV and CKMT2 activity. Differences in cardiac remodeling, left ventricular systolic/diastolic performance, and mitochondrial energetics, found in the CR-treated mice with contrasting alimentary backgrounds, were corroborated by inconsistencies in the expression of mitochondrial-biogenesis-related markers and associated regulatory networks. In particular, disruption of eNOS and AMPK -PGC-1α-mTOR-related axes. The impact of a past habit of caloric overload on the effects of CR in the WHT is a scarcely explored subject that requires deeper study in combination with analyses of other tissues and organs at higher levels of organization within the organ system. Such research will eventually lead to the development of preventative and therapeutic strategies to promote health and longevity.
Project description:ObjectivesCaloric restriction (CR) has been shown to slow the aging processes in a number of preclinical studies and reduces expression of aging-associated biomarkers in human trials. We hypothesized that CR would lead to increased incidence of ketosis and that ketosis in CR individuals would alter the aging-protective effects of CR or biomarkers thereof.Design/setting/participantsWe analyzed data from the "Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE, Phase 2)" Public Use Database available at calerie.duke.edu. In this study, non-obese adults between the ages of 21 and 50 were randomized to 25% CR or control (ad lib) diet groups and extensively monitored for two years. Given our focus on the effect of caloric restriction on ketosis, individuals with detectible ketones during the baseline visit (pre-randomization) and those with missing data for ketone testing were excluded from the analysis, leaving 71 control and 117 CR participants.MeasurementsWe analyzed the incidence of ketosis as well as ketosis free survival in control and CR participants and assessed the effect of ketosis on a number of clinical lab values, functional assessments, and participant survey data related to aging biology.ResultsWe report that CR was associated with modestly increased incidence of ketosis (4.4% in CR vs 1.9% in control), though CR-associated changes in T3, VO2, SUMPT-WT (weight normalized composite strength score - peak torque), physical functioning, and general health did not appear to be altered by the presence or absence of ketosis. Additional observations of interest include: 1) striking patterns of biomarker expression changes (MCP-1, TNFα, TGF-β1, GH) in both the control and CR participants between the baseline visit and the 24-month post-randomization visit and 2) pro-growth/anti-inflammatory baseline (pre-randomization) biomarker expression profile in CR individuals that later test ketone positive relative to other CR individuals.ConclusionsCR modestly increases the incidence of ketosis in healthy adults, yet the increase in ketosis in CR patients did not significantly affect the aging-protective effects of CR. However, given the relatively small number of participants who were ketone positive, further investigation in larger study cohorts is still required for definitive conclusions.
Project description:Caloric restriction mimetics (CRMs) mimic the biochemical effects of nutrient deprivation by reducing lysine acetylation of cellular proteins, thus triggering autophagy. Treatment with the CRM hydroxycitrate, an inhibitor of ATP citrate lyase, induced the depletion of regulatory T cells (which dampen anticancer immunity) from autophagy-competent, but not autophagy-deficient, mutant KRAS-induced lung cancers in mice, thereby improving anticancer immunosurveillance and reducing tumor mass. Short-term fasting or treatment with several chemically unrelated autophagy-inducing CRMs, including hydroxycitrate and spermidine, improved the inhibition of tumor growth by chemotherapy in vivo. This effect was only observed for autophagy-competent tumors, depended on the presence of T lymphocytes, and was accompanied by the depletion of regulatory T cells from the tumor bed.
Project description:The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to reduce the overall levels of protein acetylation and to induce autophagy have been categorized as caloric restriction mimetics (CRMs). Here, we show that aspirin or its active metabolite salicylate induce autophagy by virtue of their capacity to inhibit the acetyltransferase activity of EP300. While salicylate readily stimulates autophagic flux in control cells, it fails to further increase autophagy levels in EP300-deficient cells, as well as in cells in which endogenous EP300 has been replaced by salicylate-resistant EP300 mutants. Accordingly, the pro-autophagic activity of aspirin and salicylate on the nematode Caenorhabditis elegans is lost when the expression of the EP300 ortholog cpb-1 is reduced. Altogether, these findings identify aspirin as an evolutionary conserved CRM.
Project description:Alström syndrome (AS; OMIM 203800) is an autosomal recessive disorder characterized by cone-rod dystrophy, dilated cardiomyopathy, sensorineural hearing impairment, developmental delay, and most case had both childhood-onset obesity and hyperinsulinemia. Currently, the pathogenesis of this disease is not clear. Here we report on an 18-month-old boy with Alström syndrome. He had obesity but with normal insulin and glucose levels. Molecular analysis of the ALMS1 gene revealed a 19 base pair homozygous deletion 11116_11134del in exon 16. His body mass index decreased from 25.0 to 20.7 after calorie restriction for 9 months, and his insulin and glucose levels remained normal. Finding in this case suggests that hyperinsulinemia is a secondary event in Alström syndrome, and early-commenced treatment prevents hyperinsulinemia.