Distinct signatures of dental plaque metabolic byproducts dictated by periodontal inflammatory status
Ontology highlight
ABSTRACT: Onset of chronic periodontitis is associated with an aberrant polymicrobial community, termed dysbiosis. Findings of a recent model of its etiology suggested that dysbiosis holds a conserved metabolic signature as an emergent property. The purpose of this study was to identify robust biomarkers for periodontal inflammation severity. Furthermore, we investigated disease-associated metabolic signatures of periodontal microbiota using a salivary metabolomics approach. Collection of whole saliva samples was performed before and after removal of supragingival plaque (debridement). Periodontal inflamed surface area (PISA) was employed as an indicator of periodontal inflammatory status. Based on multivariate analyses using pre-debridement salivary metabolomics data, we found that the metabolites associated with higher PISA included cadaverine and hydrocinnamate, while uric acid and ethanolamine were associated with lower PISA. Next, we focused on dental plaque metabolic byproducts by selecting significantly decreased salivary metabolites following debridement. Metabolite set enrichment analysis revealed that polyamine metabolism, arginine and proline metabolism, butyric acid metabolism, and lysine degradation were distinctive metabolic signatures of dental plaque in the high PISA group, which may have relevance to the metabolic signatures of disease-associated communities. Collectively, our findings identified potential biomarkers of periodontal inflammatory status, while they also provide insight into metabolic signatures of dysbiotic communities.
ORGANISM(S): Human Homo Sapiens
TISSUE(S): Saliva
DISEASE(S): Dental Plaque
SUBMITTER: Masae Kuboniwa
PROVIDER: ST000496 | MetabolomicsWorkbench | Sun Oct 23 00:00:00 BST 2016
REPOSITORIES: MetabolomicsWorkbench
ACCESS DATA