Project description:High fat diet (HF) rodent models have contributed significantly to the dissection of the pathophysiology of the insulin resistance syndrome, but their phenotype varies distinctly between different studies. Here, we have analyzed gene expression patterns in livers of animals fed with different HF with varying fatty acid compositions. Keywords: diet-gene interaction
Project description:Obesity-associated hepatic lipid accumulation and chronic low-grade inflammation lead to metabolic defects. Saturated fatty acids (SFA) are a risk factor for, whereas unsaturated fatty acids (UFA) are thought to be protective against, developing metabolic diseases. Sex differences exist in the regulation of metabolism. We tested the hypothesis that diets high in SFA, mono-UFA (MUFA), or poly-UFA (PUFA) had early, sex-distinct effects that differentially contribute to long-term metabolic disturbance such as fatty liver and insulin resistance. Metabolic changes including body and fat mass, circulating leptin and glucose levels, plasma lipid profile, hepatic lipid accumulation, expression levels of genes related to lipid metabolism and low-grade inflammation, and tissue insulin sensitivity were compared between male and female mice fed with a low-fat chow, or high-fat SFA, MUFA, or PUFA for a short period of four days. SFA and MUFA males increased adiposity associated with increased liver lipid accumulation and rapid activation of inflammation in adipose and muscle tissues, whereas PUFA males did not show lipid accumulation or tissue inflammation compared to chow males. All SFA and UFA males displayed tissue insulin resistance. In contrast, female high-fat diet groups had normal liver lipid content and maintained tissue insulin sensitivity without showing tissue inflammation. Therefore, sex differences existed during early phase of development of metabolic dysfunction. The beneficial effects of PUFA, but not MUFA, were corroborated in protection of obesity, hyperlipidemia, fatty liver, and low-grade inflammation. The benefit of MUFA and PUFA in maintaining tissue insulin sensitivity in males, however, was questioned.
Project description:MicroRNAs are important negative regulators of protein coding gene expression, and have been studied intensively over the last few years. To this purpose, different measurement platforms to determine their RNA abundance levels in biological samples have been developed. In this study, we have systematically compared 12 commercially available microRNA expression platforms by measuring an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples, and synthetic spikes from homologous microRNA family members. We developed novel quality metrics in order to objectively assess platform performance of very different technologies such as small RNA sequencing, RT-qPCR and (microarray) hybridization. We assessed reproducibility, sensitivity, quantitative performance, and specificity. The results indicate that each method has its strengths and weaknesses, which helps guiding informed selection of a quantitative microRNA gene expression platform in function of particular study goals.
Project description:UNLABELLED: BACKGROUND:PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. METHODS:We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). FINDINGS:HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman's correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=-0.59, p=0.0065) insulin sensitivity. CONCLUSIONS:Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.
Project description:Amyotrophic lateral sclerosis is a fatal neurodegenerative disease. Epidemiologic data suggest that malnutrition is a common feature in amyotrophic lateral sclerosis and being overweight or obese confers a survival advantage in this patient population. In amyotrophic lateral sclerosis mouse models, a high-fat diet has been shown to lead to weight gain and prolonged survival. However, little research has been conducted to test whether nutritional interventions might ameliorate the disease course in humans. Here we review the currently available evidence supporting the potential role of dietary interventions as a therapeutic tool for amyotrophic lateral sclerosis. Ultimately, determining whether a high-fat or ketogenic diet could be beneficial in amyotrophic lateral sclerosis will require large randomized, placebo-controlled clinical trials.
Project description:Use of high-fat, ketogenic diets (KDs) to support physical performance has grown in popularity over recent years. While these diets enhance fat and reduce carbohydrate oxidation during exercise, the impact of a KD on physical performance remains controversial. The objective of this work was to assess the effect of KDs on physical performance compared with mixed macronutrient diets [control (CON)]. A systematic review of the literature was conducted using PubMed and Cochrane Library databases. Randomized and nonrandomized studies were included if participants were healthy (free of chronic disease), nonobese [BMI (kg/m2) <30], trained or untrained men or women consuming KD (<50 g carbohydrate/d or serum or whole-blood β-hydroxybutyrate >0.5 mmol/L) compared with CON (fat, 12-38% of total energy intake) diets for ≥14 d, followed by a physical performance test. Seventeen studies (10 parallel, 7 crossover) with 29 performance (13 endurance, 16 power or strength) outcomes were identified. Of the 13 endurance-type performance outcomes, 3 (1 time trial, 2 time-to-exhaustion) reported lower and 10 (4 time trials, 6 time-to-exhaustion) reported no difference in performance between the KD compared with CON. Of the 16 power or strength performance outcomes, 3 (1 power, 2 strength) reported lower, 11 (4 power, 7 strength) no difference, and 2 (power) enhanced performance in the KD compared with the CON. Risk of bias identified some concern of bias primarily due to studies allowing participants to self-select diet intervention groups and the inability to blind participants to the study intervention. Overall, the majority of null results across studies suggest that a KD does not have a positive or negative impact on physical performance compared with a CON diet. However, discordant results between studies may be due to multiple factors, such as the duration consuming study diets, training status, performance test, and sex differences, which will be discussed in this systematic review.
Project description:Wild type (a/a) agouti mouse dams were randomized to one of three diets (control, mediterranean, western) two weeks prior to pairing with an agouti (Avy/a) sire. Diet exposure continued through pregnancy and lactation. All pups were weaned onto the control diet and then followed for metabolic phenotyping measures to 10 months of age. Comprehensive phenotyping (body composition, CLAMS, blood draw) was completed at 2, 4, and 8 months, with an OGTT at 8 months. Weekly weights were also recorded. The study examines whether prenatal dietary exposure to high fat diets (HFD) and bisphenol a (BPA, those groups will not be tested in this pilot) impacts metabolic programming in offspring as measured by hepatic steatosis, serum hormone levels, and epigenetic changes in hepatic lipid metabolism genes.
Project description:Human studies suggest that high-fat diets (HFDs) increase the risk of breast cancer. The 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis rat model is commonly used to evaluate the effects of lifestyle factors such as HFD on mammary tumor risk. Past studies focused primarily on the effects of continuous maternal exposure on the risk of offspring at the end of puberty (PND50). We assessed the effects of prenatal HFD exposure on cancer susceptibility in prepubertal mammary glands and identified key gene networks associated with such disruption. During pregnancy, dams were fed AIN-93G-based diets with isocaloric high olive oil, butterfat or safflower oil. The control group received AIN-93G. Female offspring were treated with DMBA on PND21. However, a significant increase in tumor volume and a trend of shortened tumor latency were observed in rats with HFD exposure against the controls (P=.048 and P=.067, respectively). Large-volume tumors harbored carcinoma in situ. Transcriptome profiling identified 43 differentially expressed genes in the mammary glands of the HFBUTTER group as compared with control. Rapid hormone signaling was the most dysregulated pathway. The diet also induced aberrant expression of Dnmt3a, Mbd1 and Mbd3, consistent with potential epigenetic disruption. Collectively, these findings provide the first evidence supporting susceptibility of prepubertal mammary glands to DMBA-induced tumorigenesis that can be modulated by dietary fat that involves aberrant gene expression and likely epigenetic dysregulation.
Project description:Previous studies demonstrated that diet-induced obese mice fed a semi-purified high-fat diet (HFD) had greater liver tumorigenesis than mice fed a non-semi-purified diet. Because ingredients present in standard unpurified diets may elicit potential chemopreventive properties that are not present in semi-purified diets, the present study evaluated hepatic tumorigenic effects of dietary fat by replacing it with refined carbohydrates [digestible saccharides; high-carbohydrate diet (HCD)] in a semi-purified diet without altering other components. Two-wk-old C57Bl/6J male mice were randomly injected i.p. with either the liver-specific carcinogen diethylnitrosamine (25 mg/kg body weight) to induce liver cancer or saline as the nontumor control. At age 6 wk, mice with or without cancer initiation were further randomly assigned to an HFD (26% and 60% energy from carbohydrates and fat, respectively) or an HCD (66% and 12% energy from carbohydrates and fat, respectively) and consumed food ad libitum for 24 wk. Results showed that HCD-fed mice had a comparable degree of hepatic tumorigenesis (tumor number and volume) as HFD-fed mice, despite having significantly reduced body weights. HCD feeding induced greater hepatic endoplasmic reticulum (ER) stress-mediated protein kinase RNA-activated-like kinase (PERK) activation and oncogenic interleukin-6/signal transducer and activator of transcription 3 signaling than HFD feeding. HCD-stimulated PERK signaling was associated with elevated expression of prosurvival markers in tumors, including induced protein kinase B activation, increased extracellular signal-regulated kinases 1/2 phosphorylation, and elevated cyclin D1 protein expression. However, HCD-mediated PERK activation in tumors was also positively associated with markers of proapoptosis, which included elevated CCAAT/enhancer-binding protein homology protein expression and increased cleaved caspase-3. HCD-fed mice had greater severity in hepatic steatosis than HFD-fed mice. HCD-induced steatosis exacerbation was associated with increased expression in hepatic de novo lipogenic markers that can promote ER stress. Together, these data indicated that chronic HCD consumption by mice can produce comparable severity of hepatic tumorigenesis as HFD consumption, potentially through upregulating PERK-mediated ER stress.
Project description:Obesity remains prevalent in the US. One potential treatment is vagus nerve stimulation (VNS), which activates the sensory afferents innervating the stomach that convey stomach volume and establish satiety. However, current VNS approaches and stimulus optimization could benefit from additional understanding of the underlying neural response to stomach distension. In this study, obesity-prone Sprague Dawley rats consumed a standard, high-carbohydrate, or high-fat diet for several months, leading to diet-induced obesity in the latter two groups. Under anesthesia, the neural activity in the vagus nerve was recorded with a penetrating microelectrode array while the stomach was distended with an implanted balloon. Vagal tone during distension was compared to baseline tone prior to distension. Responses were strongly correlated with stomach distension, but the sensitivity to distension was significantly lower in animals that had been fed the nonstandard diets. The results indicate that both high fat and high carbohydrate diets impair vagus activity.