Project description:In order to determine whether dis-regulation of a genetic pathway could explain the increased apoptosis of parp-2-/- double positive thymocytes, the gene expression profiles in double positive thymocytes derived from wild-type and parp-2-/- mice were analysed using Affymetrix oligonucleotide chips (mouse genome 430 2.0).
Project description:Antibiotic disruption of the intestinal microbiota may cause susceptibility to pathogens that is resolved by progressive bacterial outgrowth and colonization. Succession is central to ecological theory but not widely documented in studies of the vertebrate microbiome. Here, we study succession in the hamster gut after treatment with antibiotics and exposure to Clostridium difficile. C. difficile infection is typically lethal in hamsters, but protection can be conferred with neutralizing antibodies against the A and B toxins. We compare treatment with neutralizing monoclonal antibodies (mAb) to treatment with vancomycin, which prolongs the lives of animals but ultimately fails to protect them from death. We carried out longitudinal deep sequencing analysis and found distinctive waves of succession associated with each form of treatment. Clindamycin sensitization prior to infection was associated with the temporary suppression of the previously dominant Bacteroidales and the fungus Saccinobaculus in favor of Proteobacteria. In mAb-treated animals, C. difficile proliferated before joining Proteobacteria in giving way to re-expanding Bacteroidales and the fungus Wickerhamomyces. However, the Bacteroidales lineages returning by day 7 were different from those that were present initially, and they persisted for the duration of the experiment. Animals treated with vancomycin showed a different set of late-stage lineages that were dominated by Proteobacteria as well as increased disparity between the tissue-associated and luminal cecal communities. The control animals showed no change in their gut microbiota. These data thus suggest different patterns of ecological succession following antibiotic treatment and C. difficile infection.
Project description:The gut microbiota is a key player in the host metabolism. Some bacteria are able to ferment non-digestible compounds and produce short-chain fatty acids that the host can later transform and accumulate in tissue. In this study, we aimed to better understand the relationships between the microorganisms and the short-chain fatty acid composition of the rectal content, including the possible linkage with the fatty acid composition in backfat and muscle of the pig. We studied a Duroc × Iberian crossbred population, and we found significant correlations between different bacterial and archaeal genera and the fatty acid profile. The abundance of n-butyric acid in the rectal content was positively associated with Prevotella spp. and negatively associated with Akkermansia spp., while conversely, the abundance of acetic acid was negatively and positively associated with the levels of Prevotella spp. and Akkermansia spp., respectively. The most abundant genus, Rikenellaceae RC9 gut group, had a positive correlation with palmitic acid in muscle and negative correlations with stearic acid in backfat and oleic acid in muscle. These results suggest the possible role of Prevotella spp. and Akkermansia spp. as biomarkers for acetic and n-butyric acids, and the relationship of Rikenellaceae RC9 gut group with the lipid metabolism, building up the potential, although indirect, role of the microbiota in the modification of the backfat and muscle fatty acid composition of the host.IMPORTANCEThe vital role of the gut microbiota on its host metabolism makes it essential to know how its modulation is mirrored on the fatty acid composition of the host. Our findings suggest Prevotella spp. and Akkermansia spp. as potential biomarkers for the levels of beneficial short-chain fatty acids and the possible influence of Rikenellaceae RC9 gut group in the backfat and muscle fatty acid composition of the pig.
Project description:We report for the first time movement of Correia Repeat Enclosed Elements, through inversion of the element at its chromosomal location. Analysis of Ion Torrent generated genome sequence data from Neisseria gonorrhoeae strain NCCP11945 passaged for 8 weeks in the laboratory under standard conditions and stress conditions revealed a total of 37 inversions: 24 were exclusively seen in the stressed sample; 7 in the control sample; and the remaining 3 were seen in both samples. These inversions have the capability to alter gene expression in N. gonorrhoeae through the previously determined activities of the sequence features of these elements. In addition, the locations of predicted non-coding RNAs were investigated to identify potential associations with CREE. Associations varied between strains, as did the number of each element identified. The analysis indicates a role for CREE in disrupting ancestral regulatory networks, including non-coding RNAs. RNA-Seq was used to examine expression changes related to Correia repeats in the strain
Project description:Stroke leads to gut bacterial dysbiosis that impacts the post-stroke outcome. The gut microbiome also contains a high abundance of viruses which might play a crucial role in disease progression and recovery by modulating the metabolism of both host and host's gut bacteria. We presently analyzed the virome composition (viruses and phages) by shotgun metagenomics in the fecal samples obtained at 1 day of reperfusion following transient focal ischemia in adult mice. Viral genomes, viral auxiliary metabolic genes, and viral protein networks were compared between stroke and sham conditions (stroke vs sham, exclusive to sham and exclusive to stroke). Following focal ischemia, abundances of 2 viral taxa decreased, and 5 viral taxa increased compared with the sham. Furthermore, the abundance of Clostridia-like phages and Erysipelatoclostridiaceae-like phages were altered in the stroke compared with the sham cohorts. This is the first report to show that the gut virome responds acutely to stroke.
Project description:Fermented alcoholic drinks' contribution to the gut microbiota composition is mostly unknown. However, intestinal microorganisms can use compounds present in beer. This work explored the associations between moderate consumption of beer, microbiota composition, and short chain fatty acid (SCFA) profile. Seventy eight subjects were selected from a 261 healthy adult cohort on the basis of their alcohol consumption pattern. Two groups were compared: (1) abstainers or occasional consumption (ABS) (n = 44; <1.5 alcohol g/day), and (2) beer consumption ≥70% of total alcohol (BEER) (n = 34; 200 to 600 mL 5% vol. beer/day; <15 mL 13% vol. wine/day; <15 mL 40% vol. spirits/day). Gut microbiota composition (16S rRNA gene sequencing) and SCFA concentration were analyzed in fecal samples. No differences were found in α and β diversity between groups. The relative abundance of gut bacteria showed that Clostridiaceae was lower (p = 0.009), while Blautia and Pseudobutyrivibrio were higher (p = 0.044 and p = 0.037, respectively) in BEER versus ABS. In addition, Alkaliphilus, in men, showed lower abundance in BEER than in ABS (p = 0.025). Butyric acid was higher in BEER than in ABS (p = 0.032), and correlated with Pseudobutyrivibrio abundance. In conclusion, the changes observed in a few taxa, and the higher butyric acid concentration in consumers versus non-consumers of beer, suggest a potentially beneficial effect of moderate beer consumption on intestinal health.
Project description:Gut dysbiosis has been implicated in the pathophysiology of a growing number of non-communicable diseases. High through-put sequencing technologies and short chain fatty acid (SCFA) profiling enables surveying of the composition and function of the gut microbiota and provide key insights into host-microbiome interactions. However, a methodological problem with analyzing stool samples is that samples are treated and stored differently prior to submission for analysis potentially influencing the composition of the microbiota and its metabolites. In the present study, we simulated the sample acquisition of a large-scale study, in which stool samples were stored for up to two days in the fridge or at room temperature before being handed over to the hospital. To assess the influence of time and temperature on the microbial community and on SCFA composition in a controlled experimental setting, the stool samples of 10 individuals were exposed to room and fridge temperatures for 24 and 48 hours, respectively, and analyzed using 16S rRNA gene amplicon sequencing, qPCR and nuclear magnetic resonance spectroscopy. To best of our knowledge, this is the first study to investigate the influence of storage time and temperature on the absolute abundance of methanogens, and of Lactobacillus reuteri. The results indicate that values obtained for methanogens, L. reuteri and total bacteria are still representative even after storage for up to 48 hours at RT (20°C) or 4°C. The overall microbial composition and structure appeared to be influenced more by laboratory errors introduced during sample processing than by the actual effects of temperature and time. Although microbial activity was demonstrated by elevated SCFA at both 4°C and RT, SCFAs ratios were more stable over the different conditions and may be considered as long as samples are come from similar storage conditions.
Project description:The gut microbiota has a key role in determining susceptibility to Clostridioides difficile infections (CDIs). However, much of the mechanistic work examining CDIs in mouse models uses animals obtained from a single source. We treated mice from 6 sources (2 University of Michigan colonies and 4 commercial vendors) with clindamycin, followed by a C. difficile challenge, and then measured C. difficile colonization levels throughout the infection. The microbiota were profiled via 16S rRNA gene sequencing to examine the variation across sources and alterations due to clindamycin treatment and C. difficile challenge. While all mice were colonized 1 day postinfection, variation emerged from days 3 to 7 postinfection with animals from some sources colonized with C. difficile for longer and at higher levels. We identified bacteria that varied in relative abundance across sources and throughout the experiment. Some bacteria were consistently impacted by clindamycin treatment in all sources of mice, including Lachnospiraceae, Ruminococcaceae, and Enterobacteriaceae To identify bacteria that were most important to colonization regardless of the source, we created logistic regression models that successfully classified mice based on whether they cleared C. difficile by 7 days postinfection using community composition data at baseline, post-clindamycin treatment, and 1 day postinfection. With these models, we identified 4 bacterial taxa that were predictive of whether C. difficile cleared. They varied across sources (Bacteroides) or were altered by clindamycin (Porphyromonadaceae) or both (Enterobacteriaceae and Enterococcus). Allowing for microbiota variation across sources better emulates human interindividual variation and can help identify bacterial drivers of phenotypic variation in the context of CDIs.IMPORTANCEClostridioides difficile is a leading nosocomial infection. Although perturbation to the gut microbiota is an established risk, there is variation in who becomes asymptomatically colonized, develops an infection, or has adverse infection outcomes. Mouse models of C. difficile infection (CDI) are widely used to answer a variety of C. difficile pathogenesis questions. However, the interindividual variation between mice from the same breeding facility is less than what is observed in humans. Therefore, we challenged mice from 6 different breeding colonies with C. difficile We found that the starting microbial community structures and C. difficile persistence varied by the source of mice. Interestingly, a subset of the bacteria that varied across sources were associated with how long C. difficile was able to colonize. By increasing the interindividual diversity of the starting communities, we were able to better model human diversity. This provided a more nuanced perspective of C. difficile pathogenesis.