Project description:Omega--3 polyunsaturated fatty acids (PUFAs) are essential components required for normal cellular function and have been shown to exert many preventive and therapeutic actions. The amount of n--3 PUFAs is insufficient in most Western people, whereas the level of n--6 PUFAs is relatively too high, with an n--6/n--3 ratio of >18. These two classes of PUFAs are metabolically and functionally distinct and often have important opposing physiological functions; their balance is important for homeostasis and normal development. Elevating tissue concentrations of n--3 PUFAs in mammals relies on chronic dietary intake of fat rich in n--3 PUFAs, because mammalian cells lack enzymatic activities necessary either to synthesize the precursor of n--3 PUFAs or to convert n--6 to n--3 PUFAs. Here we report that adenovirus-mediated introduction of the Caenorhabditis elegans fat-1 gene encoding an n--3 fatty acid desaturase into mammalian cells can quickly and effectively elevate the cellular n--3 PUFA contents and dramatically balance the ratio of n--6/n--3 PUFAs. Heterologous expression of the fat-1 gene in rat cardiac myocytes rendered cells capable of converting various n--6 PUFAs to the corresponding n--3 PUFAs, and changed the n--6/n--3 ratio from about 15:1 to 1:1. In addition, an eicosanoid derived from n--6 PUFA (i.e., arachidonic acid) was reduced significantly in the transgenic cells. This study demonstrates an effective approach to modifying fatty acid composition of mammalian cells and also provides a basis for potential applications of this gene transfer in experimental and clinical settings.
Project description:Metabolic diseases are closely linked to aberrant synthesis of endogenous fatty acids in the liver, called de novo lipogenesis (DNL), which is mediated by the enzyme fatty acid synthase (FASN). The composition of complex lipids consists of saturated or monosaturated fatty acids, which can be endogenously produced, and polyunsaturated fatty acids (PUFA), which are strictly dietary. Compositional differences between individuals are insufficiently understood and may influence the onset and progression of metabolic and cardiovascular diseases. Here we show that DNL critically determines the use of dietary PUFA. A patient with a hypofunctional heterozygous de novo Arg2177Cys variant in FASN exhibited an elevated composition of PUFA, which was phenocopied by pharmacological inhibition of FASN with TVB-2640 in patients with nonalcoholic steatohepatitis (NASH). In mice, the incorporation rate of supplemented omega-3 PUFA during an obesogenic diet was increased by genetic or pharmacologic reduction of DNL. Mechanistically, we show that the FASN variant exhibited a cysteine-dependent, non-enzymatic acetylation of FASN, which resulted in hyperubiquitinylation and decreased protein stability. Our study further reveals that PUFA storage is an active, enzymatic process controlled by FASN, diacylglycerol O-acyltransferase 2 (DGAT2) and MFSD2A, a membrane-transport protein, and that combining FASN inhibition and PUFA supplementation exerts additive beneficial metabolic effects. These findings provide evidence that the success of PUFA supplementation may depend on the rate of endogenous DNL and that combined PUFA supplementation and FASN inhibition may be a promising approach targeting metabolic disease.
Project description:In order to determine whether dis-regulation of a genetic pathway could explain the increased apoptosis of parp-2-/- double positive thymocytes, the gene expression profiles in double positive thymocytes derived from wild-type and parp-2-/- mice were analysed using Affymetrix oligonucleotide chips (mouse genome 430 2.0).
Project description:Appendicoliths are commonly found obstructing the lumen of the appendix at the time of appendectomy. To identify factors that might contribute to their formation we investigated the composition of appendicoliths using laser ablation inductively coupled plasma mass spectroscopy, gas chromatography, polarized light microscopy, X-ray crystallography and protein mass spectroscopy. Forty-eight elements, 32 fatty acids and 109 human proteins were identified within the appendicoliths. The most common elements found in appendicoliths are calcium and phosphorus, 11.0 ± 6.0 and 8.2 ± 4.2% weight, respectively. Palmitic acid (29.7%) and stearate (21.3%) are the most common fatty acids. Some stearate is found in crystalline form-identifiable by polarized light microscopy and confirmable by X-ray crystallography. Appendicoliths have an increased ratio of omega-6 to omega-3 fatty acids (ratio 22:1). Analysis of 16 proteins common to the appendicoliths analyzed showed antioxidant activity and neutrophil functions (e.g. activation and degranulation) to be the most highly enriched pathways. Considered together, these preliminary findings suggest oxidative stress may have a role in appendicolith formation. Further research is needed to determine how dietary factors such as omega-6 fatty acids and food additives, redox-active metals and the intestinal microbiome interact with genetic factors to predispose to appendicolith formation.
Project description:Staphylococcus aureus can utilize exogenous fatty acids for phospholipid synthesis. The fatty acid kinase FakA is essential for this utilization by phosphorylating exogenous fatty acids for incorporation into lipids. How FakA impacts the lipid membrane composition is unknown. In this study, we used mass spectrometry to determine the membrane lipid composition and properties of S. aureus in the absence of fakA We found the fakA mutant to have increased abundance of lipids containing longer acyl chains. Since S. aureus does not synthesize unsaturated fatty acids, we utilized oleic acid (18:1) to track exogenous fatty acid incorporation into lipids. We observed a concentration-dependent incorporation of exogenous fatty acids into the membrane that required FakA. We also tested how FakA and exogenous fatty acids impact membrane-related physiology and identified changes in membrane potential, cellular respiration, and membrane fluidity. To mimic the host environment, we characterized the lipid composition of wild-type and fakA mutant bacteria grown in mouse skin homogenate. We show that wild-type S. aureus can incorporate exogenous unsaturated fatty acids from host tissue, highlighting the importance of FakA in the presence of host skin tissue. In conclusion, FakA is important for maintaining the composition and properties of the phospholipid membrane in the presence of exogenous fatty acids, impacting overall cell physiology.IMPORTANCE Environmental fatty acids can be harvested to supplement endogenous fatty acid synthesis to produce membranes and circumvent fatty acid biosynthesis inhibitors. However, how the inability to use these fatty acids impacts lipids is unclear. Our results reveal lipid composition changes in response to fatty acid addition and when S. aureus is unable to activate fatty acids through FakA. We identify concentration-dependent utilization of oleic acid that, when combined with previous work, provides evidence that fatty acids can serve as a signal to S. aureus Furthermore, using mouse skin homogenates as a surrogate for in vivo conditions, we showed that S. aureus can incorporate host fatty acids. This study highlights how exogenous fatty acids impact bacterial membrane composition and function.
Project description:BackgroundA study was undertaken to examine the effects of poultry fat (PF) compared with those of soybean oil (SBO) on intestinal development, fatty acid transporter protein (FATP) mRNA expression, and fatty acid composition in broiler chickens. A total of 144 day-old male commercial broilers were randomly allocated to 2 treatment groups (6 replicates of 12 chicks for each treatment) and fed isocaloric diets containing 3.0% PF or 2.7% SBO at 0 to 3 wk and 3.8% PF or 3.5% SBO at 4 to 6 wk, respectively.ResultsPF had no influence on intestinal morphology, weight, or DNA, RNA, or protein concentrations at 2, 4, and 6 wk of age. However, compared with SBO, PF significantly decreased FATP mRNA abundance at 4 wk (P = 0.009) and 6 wk of age (P < 0.001); decreased liver fatty acid-binding protein (L-FABP) mRNA abundance at 6 wk of age (P = 0.039); and decreased C18:2 (P = 0.015), C18:3 (P < 0.001), C20:2 (P = 0.018), Σ-polyunsaturated fatty acids (Σ-PUFA) (P = 0.020), and the proportion of PUFA (P < 0.001) in the intestinal mucosa and decreased C18:2 (P = 0.010), C18:3 (P < 0.001), C20:2 (P < 0.001), Σ-PUFA (P = 0.005), and the proportion of PUFA (P < 0.001) in breast muscle at 6 wk of age.ConclusionsPF decreases FATP and L-FABP mRNA expression and decreased the proportion of PUFA in the intestinal mucosa and breast muscle.
Project description:Fatty acid composition across functional brain regions was determined in bovine brains collected from cattle that were provided supplements of calcium salts containing either palm or fish oil. The Angus cattle were divided into two groups, with one group offered the supplement of calcium salts of palm oil and the other offered the calcium salts of fish oil (n = 5 females and n = 5 males/supplement) for 220 days. These supplements to the basal forage diet were provided ad libitum as a suspension in dried molasses. The fish oil exclusively provided eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3). The functional regions were dissected from the entire brains following commercial harvest. While the cattle provided diets supplemented with the calcium salts of palm oil had increased (p < 0.01) liver concentrations of C18:1 n-9, C18:2 n-6, and arachidonic acid, the fish-oil-supplemented cattle had greater (p < 0.01) concentrations of liver EPA, DHA, and C18:3 n-3. In the brain, DHA was the most abundant polyunsaturated fatty acid. In the amygdala, pons, frontal lobe, internal capsule, and sensory cortex, DHA concentrations were greater (p < 0.05) in the brains of the cattle fed fish oil. Differences among the supplements were small, indicating that brain DHA content is resistant to dietary change. Arachidonic acid and C22:4 n-6 concentrations were greater across the regions for the palm-oil-supplemented cattle. EPA and C22:5 n-3 concentrations were low, but they were greater across the regions for the cattle fed fish oil. The effects of sex were inconsistent. The fatty acid profiles of the brain regions differed by diet, but they were similar to the contents reported for other species.
Project description:BackgroundExperimental studies indicate that gamma linolenic acid (GLA) and docosahexaenoic acid (DHA) may inhibit glioma cells growth but effects of oral consumption of these fatty acids on brain tumor fatty acid composition have not been determined in vivo.MethodsGLA oil (GLAO; 72% GLA), DHA oil (DHAO; 73% DHA) were fed to adult wistar rats (1 mL/rat/day) starting one week prior to C6 glioma cells implantation and continued for two weeks after implantation. Control group were fed same amount of high linoleic acid safflower oil (74-77% linoleic acid). Fatty acid composition of tumor samples was determined in a set of 8-12 animals in each group and serum fatty acid in 6 animals per each group. Gene expression of tumor fatty acid binding protein 7 (FABP7), epidermal growth factor receptor (EGFR), peroxisome proliferator activated receptor gamma (PPAR-gamma) and retinoid x receptor-alpha (RXR-alpha) were determined in a set of 18 animals per group.ResultsDHAO feeding increased EPA of brain tumors and decreased ratio of n-6/n-3 fatty acids. Serum levels of EPA were also increased in DHAO group. A similar trend in serum and tumor levels of DHA were observed in DHAO group but it did not achieve statistical significance. GLAO increased serum concentration of GLA but had no significant effect on tumor GLA or dihomo-gamma linolenic acid (DGLA) concentrations. Gene expression of FABP7 was up-regulated in tumors of DHAO group but no other significant effects were observed on EGFR, PPAR-gamma or RXR-alpha expression, and expression of these genes in tumors of GLAO were not different from SFO group.ConclusionDietary supplementation of DHA containing oil could be an effective way to increase levels of long chain n-3 fatty acids in brain tumors and this increase may be mediated partly by up-regulation of FABP7 expression.
Project description:We have studied the influence of experimental hyperthyroidism in the rat on the synthesis of unsaturated fatty acids and on liver microsomal lipid fatty-acid composition. Tri-iodothyronine treatment (25 micrograms/100 g body weight) daily for 3 weeks caused no significant changes in delta 9 (stearate) desaturation but a 24% decrease in delta 6 (linoleate) desaturation. Much larger doses of tri-iodothyronine increased delta 9 desaturation. Liver microsomal fatty-acid composition in hyperthyroidism is altered with significantly increased proportions of stearate and arachidonate and decreased proportions of palmitate, palmitoleate, linoleate (C18:2) and eicosa-8,11,14-trienoate (C20:3). These changes, other than the decreases proportion of C20:3 fatty acid, which may be due to the diminished delta 6 desaturase activity, cannot be attributed to changes in fatty-acid desaturation. Most of these changes were also found to be due not simply to the decreased weight gain or the increased food intake of the hyperthyroid animals. Only the decreased C18:2 fatty-acid proportions could be mimicked by restricting food intake of control animals and none of the changes were prevented by restricting food intake of hyperthyroid animals. Thus most of the changes in microsomal lipid fatty-acid composition are likely to be due to a thyroid hormone effect on peripheral lipid mobilization or lipid degradation.
Project description:We have studied the influence of experimental hypothyroidism in the rat on the synthesis of unsaturated fatty acids and on liver microsomal lipid fatty acid composition. Hypothyroid rats demonstrated an 80% decrease in delta 9 (stearate) desaturation and a 43% decrease in delta 6 (linoleate) desaturation. Liver microsomal fatty acid composition was altered in the hypothyroid animals with a significantly decreased proportion of arachidonate and increased proportions of linoleate, eicosa-8,11,14-trienoate, eicosapentaenoate and docosahexaenoate. The bulk of these changes occurred in both of the two major phospholipid components, phosphatidylcholine and phosphatidylethanolamine. All of the changes were corrected by treatment of the hypothyroid rat with 25 micrograms of tri-iodothyronine/100 g body wt. twice daily. The diminished delta 9 desaturation did not lead to any changes in fatty acid composition. The increased linoleate and decreased arachidonate levels may be due to the diminished delta 6 desaturase activity, the rate-controlling step in the conversion of linoleate into arachidonate. The increases in the proportions of the other polyunsaturated fatty acid components cannot be explained by changes in the synthesis of unsaturated fatty acids, but are probably due to diminished utilization of these fatty acids.