Project description:To better understand proteostasis in health and disease, determination of protein half-lives is essential. We improved the precision and accuracy of peptide-ion intensity based quantification in order to enable accurate determination of protein turnover in non-dividing cells using dynamic-SILAC. This enabled precise and accurate protein half-life determination ranging from 10 to more than 1000 hours. We achieve good proteomic coverage ranging from four to six thousand proteins in several types of non-dividing cells, corresponding to a total of 9699 unique proteins over the entire dataset. Good agreement was observed in half-lives between B-cells, natural killer cells and monocytes, while hepatocytes and mouse embryonic neurons showed substantial differences. Our comprehensive dataset enabled extension and statistical validation of the previous observation that subunits of protein complexes tend to have coherent turnover. Furthermore, we observed complex architecture dependent turnover within complexes of the proteasome and the nuclear pore complex. Our method is broadly applicable and might be used to investigate protein turnover in various cell types.
Project description:BackgroundBile acids (BAs) are steroid-derived molecules with important roles in digestion, the maintenance of host metabolism, and immunomodulation. Primary BAs are synthesized by the host, while secondary BAs are produced by the gut microbiome through transformation of the former. The regulation of microbial production of secondary BAs is not well understood, particularly the production of 7-dehydroxylated BAs, which are the most potent agonists for host BA receptors. The 7-dehydroxylation of cholic acid (CA) is well established and is linked to the expression of a bile acid-inducible (bai) operon responsible for this process. However, little to no 7-dehydroxylation has been reported for other host-derived BAs (e.g., chenodeoxycholic acid, CDCA or ursodeoxycholic acid, UDCA).ResultsHere, we demonstrate that the 7-dehydroxylation of CDCA and UDCA by the human isolate Clostridium scindens is induced when CA is present, suggesting that CA-dependent transcriptional regulation is required for substantial 7-dehydroxylation of these primary BAs. This is supported by the finding that UDCA alone does not promote expression of bai genes. CDCA upregulates expression of the bai genes but the expression is greater when CA is present. In contrast, the murine isolate Extibacter muris exhibits a distinct response; CA did not induce significant 7-dehydroxylation of primary BAs, whereas BA 7-dehydroxylation was promoted upon addition of germ-free mouse cecal content in vitro. However, E. muris was found to 7-dehydroxylate in vivo.ConclusionsThe distinct expression responses amongst strains indicate that bai genes are regulated differently. CA promoted bai operon gene expression and the 7-dehydroxylating activity in C. scindens strains. Conversely, the in vitro activity of E. muris was promoted only after the addition of cecal content and the isolate did not alter bai gene expression in response to CA. The accessory gene baiJ was only upregulated in the C. scindens ATCC 35704 strain, implying mechanistic differences amongst isolates. Interestingly, the human-derived C. scindens strains were also capable of 7-dehydroxylating murine bile acids (muricholic acids) to a limited extent. This study shows novel 7-dehydroxylation activity in vitro resulting from the presence of CA and suggests distinct bai gene expression across bacterial species.
Project description:Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by the progressive destruction of the intrahepatic bile ducts. Currently, the first line drug for PBC is ursodeoxycholic acid (UDCA) characterized by anti-apoptotic, anti-inflammatory and protective actions on cholangiocytes. Despite its recognized therapeutic action, 30-40% of PBC patients only partially benefit from UDCA therapy. This has led to the identification of the role of the farnesoid x receptor (FXR) in cholestatic liver diseases and, consequently, to the development of obeticholic acid (OCA), a steroid FXR agonist that has been recently approved for the treatment of PBC. OCA though is not effective in all patients and can cause itch, which eventually induces treatment drop out. Therefore, the search for new therapeutic strategies for PBC has begun. This review, in addition to summarizing the current treatments for PBC, provides overview of the chemical characteristics of new steroid FXR agonist candidates that could represent a future perspective for the treatment of PBC.
Project description:BackgroundA high prevalence of primary bile acid diarrhoea (BAD) has been reported for Rome III defined irritable bowel syndrome (IBS)-diarrhoea and functional diarrhoea. We determined whether this still applies under the contemporaneous Rome IV criteria, given that the latter characterises IBS-diarrhoea as having more frequent abdominal pain compared with previous iterations, whilst no longer recognising abdominal discomfort.MethodsPatients referred for a 75SeHCAT test completed a baseline questionnaire comprising, i) demographic data, ii) risk factors for BAD (inflammatory bowel disease, bowel resection, cholecystectomy, microscopic colitis, celiac disease, abdominal-pelvic radiotherapy), iii) the Rome III and IV bowel disorder questionnaire, and iv) mood and somatisation scores. A diagnosis of BAD constituted a 75SeHCAT of ≤15%, with moderate to severe disease being defined as ≤10% and ≤5%, respectively.FindingsOf 300 patients with complete dataset, 184 had no risk factors for BAD and fulfilled criteria for either IBS-diarrhoea or functional diarrhoea. The prevalence of primary BAD was 38% (n = 70/184), with almost half having moderate (n = 16) to severe (n = 17) disease. Using the Rome III criteria, the prevalence of primary BAD was 36% in IBS-diarrhoea (n = 63/173) and 64% (n = 7/11) in functional diarrhoea; p = 0.11. Using the Rome IV criteria, the prevalence of primary BAD was 38% (n = 53/139) in IBS-diarrhoea and 38% (n = 17/45) in functional diarrhoea; p = 0.97. Patients with primary BAD experienced more frequent loose stools (p = 0.01) and had a higher body mass index (p<0.0001) compared to those without BAD, but otherwise no significant differences were seen in age, gender, mood, somatisation, or abdominal pain. The presence of primary BAD in patients classified as overweight or obese was approximately 40% and 60%, respectively.InterpretationOver a third of patients with Rome IV IBS-diarrhoea or functional diarrhoea have primary BAD, similar to Rome III. We therefore recommend that, in secondary care settings, generic testing for primary BAD should be considered in patients presenting with chronic diarrhoea of presumed functional origin regardless of concomitant abdominal pain. Centres that lack tests for primary BAD, and who empirically treat instead, may consider targeting patients who are overweight or obese.
Project description:In order to determine whether dis-regulation of a genetic pathway could explain the increased apoptosis of parp-2-/- double positive thymocytes, the gene expression profiles in double positive thymocytes derived from wild-type and parp-2-/- mice were analysed using Affymetrix oligonucleotide chips (mouse genome 430 2.0).
Project description:Bile acids (BAs) are known to regulate their own homeostasis, but the potency of individual bile acids is not known. This study examined the effects of cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) on expression of BA synthesis and transport genes in human primary hepatocyte cultures. Hepatocytes were treated with the individual BAs at 10, 30, and 100μM for 48 h, and RNA was extracted for real-time PCR analysis. For the classic pathway of BA synthesis, BAs except for UDCA markedly suppressed CYP7A1 (70-95%), the rate-limiting enzyme of bile acid synthesis, but only moderately (35%) down-regulated CYP8B1 at a high concentration of 100μM. BAs had minimal effects on mRNA of two enzymes of the alternative pathway of BA synthesis, namely CYP27A1 and CYP7B1. BAs increased the two major target genes of the farnesoid X receptor (FXR), namely the small heterodimer partner (SHP) by fourfold, and markedly induced fibroblast growth factor 19 (FGF19) over 100-fold. The BA uptake transporter Na(+)-taurocholate co-transporting polypeptide was unaffected, whereas the efflux transporter bile salt export pump was increased 15-fold and OSTα/β were increased 10-100-fold by BAs. The expression of the organic anion transporting polypeptide 1B3 (OATP1B3; sixfold), ATP-binding cassette (ABC) transporter G5 (ABCG5; sixfold), multidrug associated protein-2 (MRP2; twofold), and MRP3 (threefold) were also increased, albeit to lesser degrees. In general, CDCA was the most potent and effective BA in regulating these genes important for BA homeostasis, whereas DCA and CA were intermediate, LCA the least, and UDCA ineffective.
Project description:TGR5, the G protein-coupled bile acid receptor 1 (GPBAR1), has been linked to inflammatory pathways as well as bile homeostasis, and could therefore be involved in primary sclerosing cholangitis (PSC) a chronic inflammatory bile duct disease. We aimed to extensively investigate TGR5 sequence variation in PSC, as well as functionally characterize detected variants.Complete resequencing of TGR5 was performed in 267 PSC patients and 274 healthy controls. Six nonsynonymous mutations were identified in addition to 16 other novel single-nucleotide polymorphisms. To investigate the impact from the nonsynonymous variants on TGR5, we created a receptor model, and introduced mutated TGR5 constructs into human epithelial cell lines. By using confocal microscopy, flow cytometry and a cAMP-sensitive luciferase assay, five of the nonsynonymous mutations (W83R, V178M, A217P, S272G and Q296X) were found to reduce or abolish TGR5 function. Fine-mapping of the previously reported PSC and UC associated locus at chromosome 2q35 in large patient panels revealed an overall association between the TGR5 single-nucleotide polymorphism rs11554825 and PSC (odds ratio = 1.14, 95% confidence interval: 1.03-1.26, p = 0.010) and UC (odds ratio = 1.19, 95% confidence interval 1.11-1.27, p = 8.5 x 10(-7)), but strong linkage disequilibrium precluded demarcation of TGR5 from neighboring genes.Resequencing of TGR5 along with functional investigations of novel variants provided unique insight into an important candidate gene for several inflammatory and metabolic conditions. While significant TGR5 associations were detected in both UC and PSC, further studies are needed to conclusively define the role of TGR5 variation in these diseases.
Project description:Lysergic acid diethylamide (LSD) is perhaps one of the best-known psychoactive substances and many structural modifications of this prototypical lysergamide have been investigated. Several lysergamides were recently encountered as 'research chemicals' or new psychoactive substances (NPS). Although lysergic acid morpholide (LSM-775) appeared on the NPS market in 2013, there is disagreement in the literature regarding the potency and psychoactive properties of LSM-775 in humans. The present investigation attempts to address the gap of information that exists regarding the analytical profile and pharmacological effects of LSM-775. A powdered sample of LSM-775 was characterized by X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR), gas chromatography mass spectrometry (GC-MS), high mass accuracy electrospray MS/MS, high performance liquid chromatography (HPLC) diode array detection, HPLC quadrupole MS, and GC solid-state infrared analysis. Screening for receptor affinity and functional efficacy revealed that LSM-775 acts as a nonselective agonist at 5-HT1A and 5-HT2A receptors. Head twitch studies were conducted in C57BL/6J mice to determine whether LSM-775 activates 5-HT2A receptors and produces hallucinogen-like effects in vivo. LSM-775 did not induce the head twitch response unless 5-HT1A receptors were blocked by pretreatment with the antagonist WAY-100,635 (1 mg/kg, subcutaneous). These findings suggest that 5-HT1A activation by LSM-775 masks its ability to induce the head twitch response, which is potentially consistent with reports in the literature indicating that LSM-775 is only capable of producing weak LSD-like effects in humans.