Remote solid cancers rewire hepatic nitrogen metabolism via host nicotinamide-N-methyltransferase
Ontology highlight
ABSTRACT: Cancers disrupt host homeostasis in various manners but the identity of host factors underlying such disruption remains largely unknown. Here we show that nicotinamide-N-methyltransferase (NNMT) is a novel host factor that mediates metabolic dysfunction in the livers of cancer-bearing mice. Multiple solid cancers distantly increase expression of Nnmt and its product 1-methylnicotinamide (MNAM) in the liver. Multi-omics analyses reveal suppression of the urea cycle accompanied by accumulation of amino acids, and enhancement of uracil biogenesis in the livers of cancer-bearing mice. Importantly, genetic deletion of Nnmt leads to alleviation of these metabolic abnormalities, and buffers cancer-dependent weight loss and reduction of the voluntary wheel-running activity. Our data also demonstrate that MNAM is capable of affecting urea cycle metabolites in the liver. These results suggest that cancers up-regulate the hepatic NNMT pathway to rewire liver metabolism towards uracil biogenesis rather than nitrogen disposal via the urea cycle, thereby disrupting host homeostasis. Anionic polar metabolites (i.e., organic acids, sugar phosphates, nucleotides,etc.) were analyzed via IC/HR/MS/MS. Cationic polar metabolites (i.e., amino acids, bases, nucleosides, NAM, SAM, MNAM, SAH, me2PY, me4PY, etc) were analyzed via PFPP-LC/HR/MS/MS.
ORGANISM(S): Mouse Mus Musculus
TISSUE(S): Liver
DISEASE(S): Cancer
SUBMITTER: Shinpei Kawaoka
PROVIDER: ST002163 | MetabolomicsWorkbench | Wed May 11 00:00:00 BST 2022
REPOSITORIES: MetabolomicsWorkbench
ACCESS DATA