Machine Learning Reveals Lipidome Dynamics in a Mouse Model of Ovarian Cancer
Ontology highlight
ABSTRACT: Ovarian cancer (OC) is one of the deadliest cancers affecting the female reproductive system. It presents little or no symptoms at the early stages, and typically unspecific symptoms at later stages. Of the OC subtypes, high-grade serous carcinoma (HGSC) is responsible for most OC deaths. However, very little is known about the metabolic course of this disease. In this longitudinal study, we investigated the temporal course of lipidome changes in a Dicer-Pten Double-Knockout (DKO) HGSC mouse model using machine and statistical learning approaches. Early progression of HGSC was marked by increased levels of phosphatidylcholines and phosphatidylethanolamines. In contrast, later stages were marked by more diverse lipids alterations, including fatty acids and their derivatives, triglycerides, ceramides, hexosylceramides, sphingomyelins, lysophosphatidylcholines, and phosphatidylinositols. These alterations provided evidence of perturbations in cell membrane stability, proliferation, and survival and candidates for early-stage and prognostic markers in humans.
ORGANISM(S): Mouse Mus Musculus
TISSUE(S): Blood
SUBMITTER: Samyukta Sah
PROVIDER: ST002276 | MetabolomicsWorkbench | Thu Sep 01 00:00:00 BST 2022
REPOSITORIES: MetabolomicsWorkbench
ACCESS DATA