UBXD8 lipidomics from whole cells (Part 1)
Ontology highlight
ABSTRACT: The intimate association between the endoplasmic reticulum (ER) and mitochondrial membranes at ER-mitochondria contact sites (ERMCS) serves as a platform for several critical cellular processes, in particular lipid synthesis. Enzymes involved in lipid biosynthesis are enriched at contacts and membrane lipid composition at contacts is distinct relative to surrounding membranes. How contacts are remodeled and the subsequent biological consequences of altered contacts such as perturbed lipid metabolism remains poorly understood. Here we investigate if the ER-tethered ubiquitin-X domain adaptor 8 (UBXD8) regulates the lipidome of cells. LC-MS/MS lipidomics found significant changes in distinct lipid species in UBXD8 knockout cells, in particular in saturated or mono-unsaturated lipid species. Perturbation of contacts and inherent lipid synthesis is emerging as a hallmark in a variety of human disorders such as neurodegeneration. Our results suggest that contacts are exquisitely sensitive to alterations to membrane lipid composition and saturation in a manner that is dependent on UBXD8.
ORGANISM(S): Human Homo Sapiens
TISSUE(S): Cultured Cells
SUBMITTER: John Purdy
PROVIDER: ST002421 | MetabolomicsWorkbench | Fri Dec 30 00:00:00 GMT 2022
REPOSITORIES: MetabolomicsWorkbench
ACCESS DATA