Project description:Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis. The DMFT INDEX (Decayed, Missing, Filled [DMF] teeth index used in dental epidemiology) values are provided for each sample We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults.
Project description:Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis. The DMFT INDEX (Decayed, Missing, Filled [DMF] teeth index used in dental epidemiology) values are provided for each sample
Project description:We profiled transcriptome and accessible chromatin landscapes in intestinal epithelial cells (IECs) from mice reared in the presence or absence of microbiota. We show that regional differences in gene transcription along the intestinal tract were accompanied by major alterations in chromatin organization. Surprisingly, we discovered that microbiota modify host gene transcription in IECs without significantly impacting the accessible chromatin landscape. Instead, microbiota regulation of host gene transcription might be achieved by differential expression of specific TFs and enrichment of their binding sites in nucleosome depleted CRRs near target genes. Our results suggest that the chromatin landscape in IECs is pre-programmed by the host in a region-specific manner to permit responses to microbiota through binding of open CRRs by specific TFs. mRNA and accessible chromatin (DNase-seq) profiles from colonic and ileal IECs were compared between conventionally-raised (CR), germ-free (GF), and conventionalized (CV) C57BL/6 mice.
Project description:The effect of oral microbiota on the intestinal microbiota has garnered growing attention as a mechanism linking periodontal diseases to systemic diseases. However, the salivary microbiota is diverse and comprises numerous bacteria with a largely similar composition in healthy individuals and periodontitis patients. Thus, the systemic effects of small differences in the oral microbiota are unclear. In this study, we explored how health-associated and periodontitis-associated salivary microbiota differently colonized the intestine and their subsequent systemic effects by analyzing the hepatic gene expression and serum metabolomic profiles. The salivary microbiota was collected from a healthy individual and a periodontitis patient and gavaged into C57BL/6NJcl[GF] mice. Samples were collected five weeks after administration. Gut microbial communities were analyzed by 16S ribosomal RNA gene sequencing. Hepatic gene expression profiles were analyzed using a DNA microarray and quantitative polymerase chain reaction. Serum metabolites were analyzed by capillary electrophoresis time-of-flight mass spectrometry. The gut microbial composition at the genus level was significantly different between periodontitis-associated microbiota-administered (PAO) and health-associated oral microbiota-administered (HAO) mice. The hepatic gene expression profile demonstrated a distinct pattern between the two groups, with higher expression of Neat1, Mt1, Mt2, and Spindlin1, which are involved in lipid and glucose metabolism. Disease-associated metabolites such as 2-hydroxyisobutyric acid and hydroxybenzoic acid were elevated in PAO mice. These metabolites were significantly correlated with Bifidobacterium, Atomobium, Campylobacter, and Haemophilus, which are characteristic taxa in PAO mice. Conversely, health-associated oral microbiota were associated with higher levels of beneficial serum metabolites in HAO mice. The multi-omics approach used in this study revealed that periodontitis-associated oral microbiota is associated with the induction of disease phenotype when they colonized the gut of germ-free mice.
Project description:Vertebrates are colonized at birth by complex microbial communities (microbiota) that influence diverse aspects of host biology. We have used a functional genomics approach to identify zebrafish genes that are differentially expressed in response to the microbiota. We assessed RNA expression profiles from zebrafish larvae at 6 days post-fertilization (dpf) that were either raised continuously in the absence of any microorganism (germ-free or GF), or raised GF through 3dpf then colonized with a normal zebrafish microbiota (conventionalized or CONVD). Total RNA was purified from pooled intact zebrafish larvae (28-80 larvae/pool, 3 biological replicate pools/condition) using Trizol reagent (Invitrogen) followed by DNase I digestion (DNA-Free, Ambion) according to manufacturers' protocols. Total RNA from each replicate pool (12ug RNA/replicate) was used as template for independent cDNA synthesis and in vitro transcription reactions (BioArray HighYield RNA Transcript Labeling Kit; Enzo Life Sciences) to generate biotinylated cRNA targets. cRNA targets (20ug/replicate) were fragmented using standard methods. Hybridization and scanning were performed using standard Affymetrix protocol. Raw expression values were normalized (Invariant set method) and modeled (PM-MM model), and present/absent calls were generated using dChip software (build date Dec.11, 2005).
Project description:Increasing evidence indicates that gut microbiota plays an important role in cancer progression. We have employed RNA-seq or microarray for genome including mRNA, microRNA or circRNA profiling in an gut microbiota -dependent manner, as a discovery platform to identify target genes with the potential to involve in tumor regulation. The deep sequencing analysis reveals regulatory functions of microbiota-mediated circular RNA (circRNA)/microRNA networks that may contribute to cancer progression.
Project description:Increasing evidence indicates that gut microbiota plays an important role in cancer progression. We have employed RNA-seq or microarray for genome including mRNA, microRNA or circRNA profiling in an gut microbiota -dependent manner, as a discovery platform to identify target genes with the potential to involve in tumor regulation. The deep sequencing analysis reveals regulatory functions of microbiota-mediated circular RNA (circRNA)/microRNA networks that may contribute to cancer progression.
Project description:Increasing evidence indicates that gut microbiota plays an important role in cancer progression. We have employed RNA-seq or microarray for genome including mRNA, microRNA or circRNA profiling in an gut microbiota -dependent manner, as a discovery platform to identify target genes with the potential to involve in tumor regulation. The deep sequencing analysis reveals regulatory functions of microbiota-mediated circular RNA (circRNA)/microRNA networks that may contribute to cancer progression.
Project description:Gut microbiota dysbiosis characterizes systemic metabolic alteration, yet its causality is debated. To address this issue, we transplanted antibiotic-free conventional wild-type mice with either dysbiotic (“obese”) or eubiotic (“lean”) gut microbiota and fed them either a NC or a 72%HFD. We report that, on NC, obese gut microbiota transplantation reduces hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-transplanted mice. Of note, this phenotype is blunted in conventional NOD2KO mice. By contrast, lean microbiota transplantation did not affect hepatic gluconeogenesis. In addition, obese microbiota transplantation changed both gut microbiota and microbiome of recipient mice. Interestingly, hepatic gluconeogenesis, PEPCK and G6Pase activity were reduced even once mice transplanted with the obese gut microbiota were fed a 72%HFD, together with reduced fed glycaemia and adiposity compared to non-transplanted mice. Notably, changes in gut microbiota and microbiome induced by the transplantation were still detectable on 72%HFD. Finally, we report that obese gut microbiota transplantation may impact on hepatic metabolism and even prevent HFD-increased hepatic gluconeogenesis. Our findings may provide a new vision of gut microbiota dysbiosis, useful for a better understanding of the aetiology of metabolic diseases. all livers are from NC-fed mice only.
Project description:A study aiming to determine if mice humanized by different donors have different gut microbiota and colonic gene expression patterns in response to the administration of a commonly prescribed, broad-spectrum antibiotic (co-amoxiclav). Male, germ-free mice were humanized by one of two healthy, unrelated human donors. 56 days later, gut microbiota and colonic transcriptome samples were analyzed at baseline, by 454 pyrosequencing and Agilent microarray, respectively. Antibiotics were then administered for 7 days, following by repeated sampling of both the microbiota and colonic RNA at days 8, 11 and 18. Results of the microbiota analysis revealed marked shifts in the composition of one donor group in response to antibiotics and not the other donor group. Transcriptomics revealed a more conserved response, however the magnitude of the effect was greater in the donor group that had a greater shift in the microbiota.