Project description:mRNAs are generally assumed to be loaded instantly with ribosomes upon entry into the cytoplasm. To measure ribosome density on nascent mRNA, we developed nascent Ribo-Seq (nRibo-Seq) by combining Ribo-Seq with progressive 4-thiouridine labelling. In mouse macrophages, we experimentally determined, for the first time, the lag between the appearance of nascent RNA and its association with ribosomes, which was calculated to be 20 - 22 min for bulk mRNA, and approximated the time it takes for mRNAs to be fully loaded with ribosomes to be 41 - 44 min. Notably, ribosomal loading time is adapted to gene function as rapid loading was observed with highly regulated genes. The lag and ribosomal loading time correlate positively with ORF size and mRNA half-life, and negatively with tRNA adaptation index. Similar results were obtained in mouse embryonic stem cells, where the lag in ribosome loading was even more pronounced with 35 - 38 min. We validated our measurements after stimulation of macrophages with lipopolysaccharide, where the lag between cytoplasmic and translated mRNA leads to uncoupling between input and ribosome-protected fragments. Uncoupling is stronger for mRNAs with long ORFs or half-lives, a finding we also confirmed at the level of protein production by nascent chain proteomics. As a consequence of the lag in ribosome loading, ribosome density measurements are distorted when performed under conditions where mRNA levels are far from steady state expression, and transcriptional changes affect ribosome density in a passive way. This study uncovers an unexpected and considerable lag in ribosome loading, and provides guidelines for the interpretation of Ribo-Seq data taking passive effects on ribosome density into account.
Project description:Grad-seq in Clostridium difficile 630. Cell lysate is analyzed in a gradient and fractionated into 21 fractions which are analysed for proteins by MS and for transcripts by RNA-sequencing.
Project description:Proteomic data of ScSUGAR-seq samples: 1)TMT experiment to confirm changes in glycosylation due to Swainsonine 2)LFQ biotin pull down experiment to assess lectin binding partners 3)LFQ of MGAT1 cell lines assessing glycopeptide and glycoproteome level changes
Project description:Estrogen Receptor alpha (ERα) is a key driver of most breast cancers, and it is the target of endocrine therapies used in the clinic to treat women with ERα positive (ER+) breast cancer. The two methods ChIP-seq (chromatin immunoprecipitation coupled with deep sequencing) and RIME (Rapid Immunoprecipitation of Endogenous Proteins) have greatly improved our understanding of ERα function during breast cancer progression and in response to anti-estrogens. A critical component of both ChIP-seq and RIME protocols is the antibody that is used to pull down the bait protein. To date, most of the ChIP-seq and RIME experiments for the study of ERα have been performed using the sc-543 antibody from Santa Cruz Biotechnology. However, this antibody has been discontinued, thereby severely impacting the study of ERα in normal physiology as well as diseases such as breast cancer and ovarian cancer. Here, we compare the sc-543 antibody with other commercially available antibodies, and we show that 06-935 (EMD Millipore) and ab3575 (Abcam) antibodies can successfully replace the sc-543 antibody for ChIP-seq and RIME experiments.
Project description:The regulation of translation elongation plays a vital role in protein folding; an adequate translational pause provides time and cellular environments for the co-translational folding of nascent peptides. However, the genomic landscape, sequence determinants, and molecular consequences of translational pausing remain mostly unknown. In this study, we performed disome-seq that sequenced mRNA fragments protected by two consecutive ribosomes – a product of severe translational pauses during which the upstream ribosome collides into the paused one. We detected severe translational pauses on ~75% of yeast genes. These pauses were often explained by one of the three mechanisms: 1) slow ribosome releasing at stop codons, 2) slow peptide formation from proline, glycine, asparagine, and cysteine, and 3) slow leaving of polylysine from the exit tunnel of ribosomes. Notably, these amino acids also terminate the α-helical conformation. Such dual roles of amino acids establish an inborn coupling between the synthetic completion of a structural motif and a translational pause. Furthermore, paused ribosomes often recruit chaperones to assist protein folding. As a consequence, emergent protein structures during evolution should be ready to be correctly folded. Collectively, our study shows widespread translational pauses and sheds lights on a better understanding of the regulation of co-translational protein folding.
Project description:Proteomic analysis of Ago2-/- oocytes revealed that Ago2 interacted with endogenous small interfering RNAs (endo-siRNAs) to repress mRNA translation globally.