Project description:In marine Vibrio species, chitin-induced natural transformation enables bacteria to take up DNA from the external environment and integrate it into their genome via homologous recombination. Expression of the master competence regulator TfoX bypasses the need for chitin induction and drives expression of the genes required for competence in several Vibrio species. Here, we show that TfoX expression in two Vibrio campbellii strains, DS40M4 and NBRC 15631, enables high frequencies of natural transformation. Conversely, transformation was not achieved in the model quorum-sensing strain V. campbellii BB120 (previously classified as Vibrio harveyi). Surprisingly, we find that quorum sensing is not required for transformation in V. campbellii DS40M4. This result is in contrast to Vibrio cholerae that requires the quorum-sensing regulator HapR to activate the competence regulator QstR. However, similar to V. cholerae, QstR is necessary for transformation in DS40M4. To investigate the difference in transformation frequencies between BB120 and DS40M4, we used previously studied V. cholerae competence genes to inform a comparative genomics analysis coupled with transcriptomics. BB120 encodes homologs of all known competence genes, but most of these genes were not induced by ectopic expression of TfoX, which likely accounts for the non-functional natural transformation in this strain. Comparison of transformation frequencies among Vibrio species indicates a wide disparity among even closely related strains, with Vibrio vulnificus having the lowest functional transformation frequency. We show that ectopic expression of both TfoX and QstR is sufficient to produce a significant increase in transformation frequency in Vibrio vulnificus.
Project description:The transcriptome of the wild type strain and ΔzntR of Vibrio parahaemolyticus was compared by RNA sequencing analysis. The data revealed that some genes, such as zntA, were significantly differentially expressed in the mutant.
Project description:Environmental isolates of Vibrio cholerae from California coastal water compared to reference strain N16961. A genotyping experiment design type classifies an individual or group of individuals on the basis of alleles, haplotypes, SNP's. Keywords: genotyping_design; array CGH
Project description:Vibrio alginolyticus is a Gram-negative marine bacterium. A limited population of the organisms causes acute gastroenteritis in humans. In this study, Vibrio alginolyticus wild type strain EPGS is compared with the mutants of Ser-Thr kinase PpkA and phosphatase PppA, after cultured for 7h, in Luria-Bertani containing medium 3 % NaCl at 30 C. Our goal is to determine the ppkA and pppA regulon.
Project description:In recent years, due to the influence of climate change and rising sea temperature, the incidence of Vibrio alginolyticus infections is increasing, and becoming the second most common Vibrio species reported in human illness. Therefore, better understanding of the pathogenic mechanism of V. alginolyticus infection is urgently needed. Vvrr1 (Vibrio virulence regulatory RNA 1) is a new found ncRNA predicted to be closely related to the adhesion ability of V. alginolyticus through the previous RNA-seq. In this study, the target genes of Vvrr1 were fully screened and verified by constructing Vvrr1 over-expressed strains and proteome sequencing technology.
Project description:Vibrio parahaemolyticus an emerging pathogen that is a causative agent of foodborne gastroenteritis when raw or undercooked seafood is consumed. Previous microarray data using a Vibrio parahaemolyticus RIMD2210633 chip has shown the master quorum-sensing regulator OpaR controls virulence, type III and type VI secretion systems, and flagellar and capsule production genes. In a parallel study, RNA-Seq was used to comparatively study the transcriptome changes of wild type Vibrio parahaemolyticus BB22 and a ΔopaR strain directly. Differences in mRNA expression were analyzed using next generation Illumina sequencing and bioinformatics techniques to align and count reads. A comparison with the previous microarray data showed good correlation between the shared genes. The RNA-Seq offered an insight into control of genes specific to the Vibrio parahaemolyticus BB22 strain as well as a new look at the sRNAs that are expressed. Eleven transcriptional regulators with greater than 4 fold regulation in the previous microarray study and 2 fold regulation in the RNA-Seq analysis, were chosen to validate the data using qRT-PCR and further characterized with electrophoretic mobility shift assays (EMSAs) to determine if they are direct targets of OpaR. The transcription factors chosen play key roles in virulence, surface motility, cell to cell interactions, and cell surface characteristics. One small RNA was identified in the RNA-Seq data to be quorum-sensing controlled and unidentified by other programs. The RNA-Seq data has aided in understanding and elucidating the hierarchy of quorum-sensing control of OpaR in Vibrio parahaemolyticus. The wild type Vibrio parahaemolyticus BB22 strain LM5312 and an opaR deletion strain LM5674 were analyzed for mRNA expression using RNA-Seq.
Project description:Vibrio fluvialis A8 was a newly isolated strain that possessed a good agarase production ability. The Secretomic analysis using nanoLC-MS/MS was performed to study the molecular properties including molecular weight, pI and relative abundance of the agarases in the secretome of this strain.
Project description:Vibrio parahaemolyticus an emerging pathogen that is a causative agent of foodborne gastroenteritis when raw or undercooked seafood is consumed. Previous microarray data using a Vibrio parahaemolyticus RIMD2210633 chip has shown the master quorum-sensing regulator OpaR controls virulence, type III and type VI secretion systems, and flagellar and capsule production genes. In a parallel study, RNA-Seq was used to comparatively study the transcriptome changes of wild type Vibrio parahaemolyticus BB22 and a ΔopaR strain directly. Differences in mRNA expression were analyzed using next generation Illumina sequencing and bioinformatics techniques to align and count reads. A comparison with the previous microarray data showed good correlation between the shared genes. The RNA-Seq offered an insight into control of genes specific to the Vibrio parahaemolyticus BB22 strain as well as a new look at the sRNAs that are expressed. Eleven transcriptional regulators with greater than 4 fold regulation in the previous microarray study and 2 fold regulation in the RNA-Seq analysis, were chosen to validate the data using qRT-PCR and further characterized with electrophoretic mobility shift assays (EMSAs) to determine if they are direct targets of OpaR. The transcription factors chosen play key roles in virulence, surface motility, cell to cell interactions, and cell surface characteristics. One small RNA was identified in the RNA-Seq data to be quorum-sensing controlled and unidentified by other programs. The RNA-Seq data has aided in understanding and elucidating the hierarchy of quorum-sensing control of OpaR in Vibrio parahaemolyticus.
Project description:Investigation of whole genome gene expression level changes in a Vibrio cholerae O395N1 delta-nqrA-F mutant, compared to the wild-type strain.