Project description:The NDH1 complex fulfils numerous tasks in the cyanobacterial cell such as respiration, cyclic electron flow, and inorganic carbon concentration. Despite the immense progress in our understanding of structure/function relation of the cyanobacterial NDH1 complex, the subunits catalysing the NAD(P)H docking and oxidation are still missing. The gene sml0013 of Synechocystis 6803 encodes for a small protein of unknown function for that homologs exist in all completely known cyanobacterial genomes. The protein exhibits weak similarities to the NDF6 protein, which was reported from Arabidopsis chloroplasts as a NDH subunit (Ishikawa et al. 2008). A sml0013 inactivation mutant of Synechocystis 6803 was generated and characterized. It showed only weak differences regarding growth and pigmentation at various culture conditions; most remarkably it exhibited a glucose-sensitive phenotype in the light. The genome-wide expression pattern of the Δsml0013::Km mutant was almost identical to wild type when grown under high CO2 conditions as well as after shifts to low CO2 conditions. However, measurements of the photosystem I redox kinetic in cells of the Δsml0013::Km mutant revealed differences to wild type such as a decreased capability of cyclic electron flow as well as of utilization of electrons from catabolic processes. These results suggest that the Sml0013 protein (named NdhP) represent a novel subunit of the cyanobacterial NDH1 complex mediating its coupling to the respiratory or photosynthetic electron flow.
Project description:The NDH1 complex fulfils numerous tasks in the cyanobacterial cell such as respiration, cyclic electron flow, and inorganic carbon concentration. Despite the immense progress in our understanding of structure/function relation of the cyanobacterial NDH1 complex, the subunits catalysing the NAD(P)H docking and oxidation are still missing. The gene sml0013 of Synechocystis 6803 encodes for a small protein of unknown function for that homologs exist in all completely known cyanobacterial genomes. The protein exhibits weak similarities to the NDF6 protein, which was reported from Arabidopsis chloroplasts as a NDH subunit (Ishikawa et al. 2008). A sml0013 inactivation mutant of Synechocystis 6803 was generated and characterized. It showed only weak differences regarding growth and pigmentation at various culture conditions; most remarkably it exhibited a glucose-sensitive phenotype in the light. The genome-wide expression pattern of the M-NM-^Tsml0013::Km mutant was almost identical to wild type when grown under high CO2 conditions as well as after shifts to low CO2 conditions. However, measurements of the photosystem I redox kinetic in cells of the M-NM-^Tsml0013::Km mutant revealed differences to wild type such as a decreased capability of cyclic electron flow as well as of utilization of electrons from catabolic processes. These results suggest that the Sml0013 protein (named NdhP) represent a novel subunit of the cyanobacterial NDH1 complex mediating its coupling to the respiratory or photosynthetic electron flow. Gene expression of Synechocystis sp. PCC 6803 WT and a M-NM-^Tsml0013::Km mutant was monitored at HC conditions (5% CO2) and at 24h after a shift to LC conditions (ambient air containing 0.035% CO2). Each condition was sampled in biological duplicates.
Project description:We installed and optimized a genetic tool that allows control over protein stability in a model cyanobacterium. This tool has potential uses for the fundamental study of cyanobacterial genes, and may be useful for the design of more sophisticated, bioindustrial cyanobacterial strains.