Project description:FROG and miniFROG reports are provided for the study involving genome-scale modelling the Microbacterium species to identify strain-specific features for metabolic adaptation to the Atacama Desert. The models (Mgcr1 and Mgcr2) are provided in the Supplementary Information of Mandakovic et al, 2020 cited here.
2024-10-15 | MODEL2408030004 | BioModels
Project description:Halite microbial communities from Atacama Desert, Chile
Project description:Marine microbial communities are critical for biogeochemical cycles and the productivity of ocean ecosystems. Primary productivity, at the base of marine food webs, is constrained by nutrient availability in the surface ocean, and nutrient advection from deeper waters can fuel photosynthesis. In this study, we compared the transcriptional responses by surface microbial communities after experimental deep water mixing to the transcriptional patterns of in situ microbial communities collected with high-resolution automated sampling during a bloom in the North Pacific Subtropical Gyre. Transcriptional responses were assayed with the MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories) marine environmental microarray, which targets all three domains of life and viruses. The experiments showed that mixing of deep and surface waters substantially affects the transcription of photosystem and nutrient response genes among photosynthetic taxa within 24 hours, and that there are specific responses associated with the addition of deep water containing particles (organisms and detritus) compared to filtered deep water. In situ gene transcription was most similar to that in surface water experiments with deep water additions, showing that in situ populations were affected by mixing of nutrients at the six sampling sites. Together, these results show the value of targeted metatranscriptomes for assessing the physiological status of complex microbial communities.
Project description:We cultivated two halo-alkaliphilic cyanobacteria consortia in chemostats at pH 10.2-11.4. One consortium was dominated by Ca. Sodalinema alkaliphilum, the other by a species of Nodosilinea. These two cyanobacteria dominate natural communities in Canadian and Asian alkaline soda lakes. We show that increasing the pH decreased biomass yield. This decrease was caused, in part, by a dramatic increase in carbon transfer to heterotrophs. At pH 11.4, cyanobacterial growth became limited by bicarbonate uptake, which was mainly ATP-dependent. In parallel, the higher the pH, the more sensitive cyanobacteria became to light, resulting in photoinhibition and upregulation of DNA repair systems.