Project description:The genomic DNAs of strains JPCM5 and 263 of L. infantum, strains LV39 and Friedlin of L. major and strains Parrot-TarII and S125 of L. tarentolae were used in comparative genomic hybridizations to reveal the intra-species and inter-species gene content, and to validate L. tarentolae Parrot-TarII genome sequencing results. Leishmania (Sauroleishmania) tarentolae was first isolated in the lizard Tarentola mauritanica. This species is not known to be pathogenic to humans but is often used as a model organism for molecular analyses or protein overproduction. The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved by high-throughput sequencing technologies. The L. tarentolae genome was first assembled de novo and then aligned against the reference L. major Friedlin genome to facilitate contig positioning and annotation, providing a 23-fold coverage of the genome. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described, and it provides an opportunity for comparison with the completed genomes of the pathogenic Leishmania species. A high synteny was observed in de novo assembled contigs between all sequenced Leishmania species. A number of limited chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic with L. major. Globally, over 90% of the L. tarentolae gene content was shared with the other Leishmania species. There were 250 L. major genes absent from L. tarentolae, and interestingly these missing genes were primarily expressed in the intracellular amastigote stage of the pathogenic parasites. This implies that L. tarentolae may have impaired ability to survive as an intracellular parasite. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the leishmanolysin (GP63) and a gene related to the promastigote surface antigen (PSA31C). Overall, L. tarentolae appears to have a gene content more adapted to the insect stage rather than the mammalian one. This may partly explain its inability to replicate within mammalian macrophages and its suspected preferred life style as promastigote in the lizards.
Project description:The genomic DNAs of strains JPCM5 and 263 of L. infantum, strains LV39 and Friedlin of L. major and strains Parrot-TarII and S125 of L. tarentolae were used in comparative genomic hybridizations to reveal the intra-species and inter-species gene content, and to validate L. tarentolae Parrot-TarII genome sequencing results. Leishmania (Sauroleishmania) tarentolae was first isolated in the lizard Tarentola mauritanica. This species is not known to be pathogenic to humans but is often used as a model organism for molecular analyses or protein overproduction. The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved by high-throughput sequencing technologies. The L. tarentolae genome was first assembled de novo and then aligned against the reference L. major Friedlin genome to facilitate contig positioning and annotation, providing a 23-fold coverage of the genome. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described, and it provides an opportunity for comparison with the completed genomes of the pathogenic Leishmania species. A high synteny was observed in de novo assembled contigs between all sequenced Leishmania species. A number of limited chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic with L. major. Globally, over 90% of the L. tarentolae gene content was shared with the other Leishmania species. There were 250 L. major genes absent from L. tarentolae, and interestingly these missing genes were primarily expressed in the intracellular amastigote stage of the pathogenic parasites. This implies that L. tarentolae may have impaired ability to survive as an intracellular parasite. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the leishmanolysin (GP63) and a gene related to the promastigote surface antigen (PSA31C). Overall, L. tarentolae appears to have a gene content more adapted to the insect stage rather than the mammalian one. This may partly explain its inability to replicate within mammalian macrophages and its suspected preferred life style as promastigote in the lizards. Six strains of three Leishmania species were hybridizated to 12 microarrays, each with four biological replicates (independent cultures). Supplementary file: Represents final results obtained after statistical analysis of all replicates.
Project description:Import and oxidative folding of proteins in the mitochondrial intermembrane space differ among eukaryotic lineages. While opisthokonts such as yeast rely on the receptor and oxidoreductase Mia40 in combination with the Mia40:cytochrome c oxidoreductase Erv, kinetoplastid parasites and other excavates lack Mia40 but have a functional Erv homologue. Whether excavate Erv homologues rely on a Mia40 replacement or directly interact with imported protein substrates remains controversial. Here we used the CRISPR-Cas9 system to generate a set of homozygous tagged and untagged point and deletion mutants of LTERV from the kinetoplastid model parasite Leishmania tarentolae. Modifications of the shuttle cysteine motif of LtErv were lethal, whereas replacement of clamp residue Cys17 or removal of the kinetoplastida-specific second (KISS) domain had no impact on parasite viability under standard growth conditions. However, removal of the KISS domain rendered parasites sensitive to heat stress and led to the accumulation of homodimeric and mixed LtErv disulfides. We therefore determined and compared the redox interactomes of tagged wild-type LtErv and LtErvΔKISS using SILAC and quantitative mass spectrometry. While the Mia40-replacement candidate Mic20 and all but one typical substrates with twin Cx3C- or twin Cx9C-motifs were absent in both redox interactomes, we identified a small set of alternative interaction candidates with potential redox-active cysteine residues. In summary, our study reveals parasite-specific intracellular structure-function relationships and redox interactomes of LtErv with implications for current hypotheses on mitochondrial protein import in non-opisthokonts.
Project description:Base J and H3.V promote RNA Polymerase (RNAP) II termination within polycistronic gene clusters in the kinetoplastid species Trypanosoma brucei. Although base J has been shown to promote RNAP II termination in the related kinetoplastid species Leishmania major and Leishmania tarentolae, the role of H3.V was unclear. The effect of acute J loss on mRNA transcript abundance was also unknown. We find here that H3.V does not promote transcription termination in Leishmania major, but loss of H3.V does reduce J levels. The J loss in H3.V knockout cells is not enough to result in a termination defect, which we show is due to a threshold level of J that is sufficient to promote termination. Loss of J beyond that threshold results in termination defects. Further, the decreased J in H3.V knockout cells allowed greater reduction of J by dimethyloxalylglycine (DMOG), which inhibits J synthesis, compared to wild type cells treated with DMOG, and resulted in stronger defects in RNAP II termination and cell growth. By mRNA-seq we see largely upregulation of genes near the ends of gene clusters following J loss, indicating that J represses genes near termination sites. These findings reveal a conserved role of J in promoting termination prior to the end of polycistronic gene clusters in kinetoplastid parasites and suggest that the essential nature of J is related to its role in repressing genes by promoting termination.
Project description:Base J and H3.V promote RNA Polymerase (RNAP) II termination within polycistronic gene clusters in the kinetoplastid species Trypanosoma brucei. Although base J has been shown to promote RNAP II termination in the related kinetoplastid species Leishmania major and Leishmania tarentolae, the role of H3.V was unclear. The effect of acute J loss on mRNA transcript abundance was also unknown. We find here that H3.V does not promote transcription termination in Leishmania major, but loss of H3.V does reduce J levels. The J loss in H3.V knockout cells is not enough to result in a termination defect, which we show is due to a threshold level of J that is sufficient to promote termination. Loss of J beyond that threshold results in termination defects. Further, the decreased J in H3.V knockout cells allowed greater reduction of J by dimethyloxalylglycine (DMOG), which inhibits J synthesis, compared to wild type cells treated with DMOG, and resulted in stronger defects in RNAP II termination and cell growth. By mRNA-seq we see largely upregulation of genes near the ends of gene clusters following J loss, indicating that J represses genes near termination sites. These findings reveal a conserved role of J in promoting termination prior to the end of polycistronic gene clusters in kinetoplastid parasites and suggest that the essential nature of J is related to its role in repressing genes by promoting termination.