Project description:ErfA is a transcription factor of Pseudomonas aeruginosa. We here define the genome-wide binding sites of ErfA by DAP-seq in Pseudomonas aeruginosa PAO1 and IHMA87, Pseudomonas chlororaphis PA23, Pseudomonas protegens CHA0 and Pseudomonas putida KT2440.
Project description:The aim of this experiment was to determine if the development of resistance to antibiotics can be driven by the concentration and speciation of Cu. Experimental setup was designed to investigate two hypotheses for which two strains of Gram- bacteria have been selected: - Do TE enhance AR in resistant bacteria? Resistant strain: Bioluminescent Pseudomonas aeruginosa PAO1 (Xen41, Tetracycline resistant) - Do TE induce AR in sensitive bacteria? Sensitive strain: Pseudomonas aeruginosa PAO1 (Wild Type)
Project description:The Pseudomonas aeruginosa quorum-sensing (QS) systems contribute to bacterial homeostasis and pathogenicity. Although many regulators have been characterized to control the production of virulence factors and QS signaling molecules, its detailed regulatory mechanisms still remain elusive. Here, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) on 10 key QS regulators. The direct regulation of these genes by corresponding regulator has been confirmed by Electrophoretic mobility shift assays (EMSAs) and quantitative real-time polymerase chain reactions (qRT-PCR). Binding motifs are found by using MEME suite and verified by footprint assays in vitro. Collectively, this work provides new cues to better understand the detailed regulatory networks of QS systems. ChIP-seq of 10 QS regulators in Pseudomonas aeruginosa
Project description:Pseudomonas syringae uses HrpRSL to regulate the expression of type III secretion system (T3SS) genes and bacterial virulence. However, the molecular mechanism and the regulons of HrpRSL have yet to be fully elucidated. Here, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) on HrpRSL and Lon. The direct regulation of these genes by corresponding regulator has been confirmed by Electrophoretic mobility shift assays (EMSAs) and quantitative real-time polymerase chain reactions (qRT-PCR). Binding motifs are found by using MEME suite and verified by footprint assays in vitro. Collectively, this work provides new cues to better understand the detailed regulatory networks of T3SS systems in P. syringae. ChIP-seq analysis of HrpRSL and Lon in Pseudomonas syringas