Project description:The centromere-specific Histone H3-variant CENH3 (also known as CENP-A) is considered to be an epigenetic mark for establishment and propagation of centromere identity. Pulse-induction of CENH3 (Drosophila CID) in Schneider S2 cells incorporates into noncentromeric regions and generates CID islands that resist clearing from chromosome arms for multiple cell generations. We demonstrate that CID islands represent functional ectopic kinetochores, which are non-randomly distributed on the chromosome and display a preferential localization near telomeres and pericentric heterochromatin in transcriptionally silent, intergenic chromatin domains. Although overexpression of heterochromatin protein 1 (HP1) or increasing Histone acetylation interferes with CID islands formation on a global scale, induction of a locally defined region of synthetic heterochromatin by targeting HP1-LacI fusions to stably integrated Lac Operator arrays produces a proximal hotspot for CID islands formation. These data suggest that the characteristics of regions bordering heterochromatin promote de novo kinetochore assembly and thereby contribute to centromere identity. ArrayExpress Release Date: 2011-07-15 Person Roles: submitter Person Last Name: Diehl Person First Name: Sarah Person Mid Initials: Person Email: diehl@immunbio.mpg.de Person Phone: (+49) 761 5108 795 Person Address: Stuebeweg 51, 79108 Freiburg im Breisgau, Germany Person Affiliation: Max-Planck-Institute for Immunobiology and Epigenetics Person Roles: investigator Person Last Name: Heun Person First Name: Patrick Person Mid Initials: Person Email: heun@immunbio.mpg.de Person Phone: (+49) 761 5108 717 Person Address: Stuebeweg 51, 79108 Freiburg im Breisgau, Germany Person Affiliation: Max-Planck-Institute for Immunobiology and Epigenetics Publication Title: Heterochromatin boundaries are hotspots for de novo kinetochore formation. Publication Author List: Agata Olszak, Dominic van Essen, Antonio J. Pereira, Sarah Diehl, Thomas Manke, Helder Maiato, Simona Saccani and Patrick Heun
Project description:Tissue-specific methylation patterns suggest a role for CpG island methylation in differentiation and cell-type-specific gene regulation. We have profiled CpG island methylation in different cells of the immune cell lineage to investigate this role. MBD-affinity purification combined with next generation sequencing was used to analyse CpG island methylation in dendritic cells, B cells, Th1, Th2 and naïve T cells. ChIP-seq was carried out to determine RNA polymerase II binding sites in these cell types and this was compared to the methylation profiles obtained. This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/ Abstract: We have profiled CpG island methylation in various immune system cell types and related this to gene expression in these cells.
Project description:The centromere-specific Histone H3-variant CENH3 (also known as CENP-A) is considered to be an epigenetic mark for establishment and propagation of centromere identity. Pulse-induction of CENH3 (Drosophila CID) in Schneider S2 cells incorporates into noncentromeric regions and generates CID islands that resist clearing from chromosome arms for multiple cell generations. We demonstrate that CID islands represent functional ectopic kinetochores, which are non-randomly distributed on the chromosome and display a preferential localization near telomeres and pericentric heterochromatin in transcriptionally silent, intergenic chromatin domains. Although overexpression of heterochromatin protein 1 (HP1) or increasing Histone acetylation interferes with CID islands formation on a global scale, induction of a locally defined region of synthetic heterochromatin by targeting HP1-LacI fusions to stably integrated Lac Operator arrays produces a proximal hotspot for CID islands formation. These data suggest that the characteristics of regions bordering heterochromatin promote de novo kinetochore assembly and thereby contribute to centromere identity.
Project description:The individualized treatment of tumors has always been an urgent problem in clinical practice. Organoids-on-a-chip can reflect the heterogeneity of tumors and is a good model for in vitro anticancer drug screening. In this study, surgical specimens of patients with advanced colorectal cancer will be collected for organoid culture and organoids-on-a- chip. Use organoids-on-a-chip to screen tumor chemotherapy drugs, compare the results of patients’ actual medication regimens, and study the guiding role of organoids in the formulation of precise tumor treatment plans. The investigators will compare the response of organoids to drugs in vitro with the patient’s response to actual chemotherapy and targeted drugs and explore the feasibility and accuracy of organoids-on-a-chip based drug screening for advanced colorectal cancer. The project will establish a screening platform for chemotherapeutic drugs and targeted drugs based on colorectal cancer organoids to quickly and accurately formulate personalized treatment plans for clinical patients.
Project description:In mammalian genomes, the vast majority of RNA polymerase II initiation events take place at CpG island promoters. Despite their relevance our understanding of their regulation remains limited. Here we identify Banp as the long sought-after TF that binds the orphan CGCG element in CpG islands by combining single-molecule footprinting with interaction proteomics. We show that Banp drives activity of CpG islands that control essential metabolic genes in the mouse and human genome. Banp binding is strongly repelled by DNA methylation of its motif in vitro and in vivo, which restricts most binding to CpG islands and accounts for its absence at aberrantly methylated CpG islands in cancer cells. Upon binding to an unmethylated motif, Banp opens chromatin and positions nucleosomes. These findings expand our understanding of CpG island gene regulation and put forth a model whereby CpG islands rely for their activity on methylation sensitive TFs capable of opening and organizing chromatin.
Project description:Proteotoxicity from insufficient clearance of misfolded/damaged proteins underlies many diseases. Carboxyl terminus of Hsc70-interacting protein (CHIP) is an important regulator of proteostasis in many cells, having E3-ligase and chaperone functions and often directing damaged proteins towards proteasome recycling. While enhancing CHIP functionality has broad therapeutic potential, prior efforts have all relied on genetic upregulation. Here we demonstrate that CHIP-mediated protein turnover is markedly post-translationally enhanced by direct protein kinase G (PKG) phosphorylation at S20 (mouse, S19 human). This increases CHIP binding affinity to Hsc70, CHIP protein halflife, and consequent clearance of stress-induced ubiquitinated-insoluble proteins. PKGmediated CHIP-pS20 or expressing CHIP-S20E (phosphomimetic) reduces ischemic proteo- and cytotoxicity, whereas a phospho-silenced CHIP-S20A amplifies both. In vivo, depressing PKG activity lowers CHIP-S20 phosphorylation and protein, exacerbating proteotoxicity and heart dysfunction after ischemic injury. CHIP-S20E knock-in mice better clear ubiquitinated proteins and are cardio-protected. PKG activation provides post-translational enhancement of protein quality control via CHIP.
Project description:We compare the methylation status of CpG island clones by MeDIP in SW48 colon cancer cells relative to normal colon mucosa and WI38 primary fibroblasts. Keywords: ordered
Project description:Affymetrix single nucleotide polymorphism (SNP) array data were collected to study genome-wide patterns of genomic variation across a broad geographical range of Island Southeast Asian populations. This region has experienced an extremely complex admixture history. Initially settled ~50,000 years ago, Island Southeast Asia has since been the recipient of multiple waves of population movements, most recently by Austronesian-speaking groups ultimately from Neolithic mainland Asia and later arrivals during the historic era from India and the Middle East. We have genotyped SNPs in ~500 individuals from 30 populations spanning this entire geographical region, from communities close to mainland Asia through to New Guinea. Particular attention has been paid to genomic data that are informative for population history, including the role of recent arrivals during the historic era and admixture with archaic hominins.