Project description:Cadmium sulphide quantum dots (CdS QDs) are widely used in novel equipment. The relevance of the research lies in the need to develop risk assessments for nanomaterials (ENMs), using baker's yeast as model system. A whole-genome microarray experiment, performed on Saccharomyces cerevisiae (BY4742), showed how genes were regulated in response to CdS QDs.
Project description:This project aims to identify novel RNA binding proteins in the baker's yeast, Saccharomyces cerevisiae. Since interactions between RNAs and proteins may be transient, yeast cells were crosslinked with UV light at 254 nm which promotes the covalent link between proteins and RNAs. After this, polyadenylated mRNAs were purified via oligo(dT) coupled to magentic beads under stringet conditions. Finally, samples were subjected to mass spectrometry analysis. To rule out the possibility of RNA-independent binding we also analysed other samples: i) samples digested with RNase one; ii) samples where we performed competition assays with polyadenylic acid.
Project description:Effect of FLO8 or MSS11 deletion and -overexpression on yeast transcript profiles compared to wild type in laboratory yeast strains Σ1278b and S288c.
Project description:Saccharomyces cerevisiae yeast is a fungus presenting a peripheral organelle called the cell wall. The cell wall protects the yeast cell from stress and provides means for communication with the surrounding environment. It has a complex molecular structure, composed of an internal part of cross-linked polysaccharides and an external part of mannoproteins. These latter are very interesting owing to their functional properties, dependent of their molecular features with massive mannosylations. Therefore, the molecular characterization of mannoproteins is a must relying on the optimal isolation and preparation of the cell wall fraction. Multiple methods are well reported for yeast cell wall isolation. The most ap-plied one consists of yeast cell lysis by mechanical disruption. However, applying this classical approach to S288C yeast cells showed a considerable contamination with non-cell wall proteins, mainly comprising mitochondrial proteins. Here-in, we tried to further purify the yeast cell wall preparation by two means: ultracentrifugation and Triton X-100 addition. While the first strategy showed limited outcomes in mitochondrial proteins removal, the second strategy showed optimal results when Triton X-100 was added at 5%, allowing the identification of more mannoproteins and enriching significant-ly their amounts. This promising method could be reliably implemented in lab-scale and industrial processes for “pure” cell wall isolation.
Project description:This project aims to identify novel RNA binding proteins in the baker's yeast , Saccharomyces cerevisiae, involved in the oxidative stress,. Since interactions between RNAs and proteins may be transient, yeast cells, either untreated and growth in rich media and exposed to 0.5 mM hydrogen peroxide for 15 minutes were crosslinked with UV light at 254 nm which promotes the covalent link between proteins and RNAs. After this, polyadenylated mRNAs were purified via oligo(dT) coupled to magentic beads under stringent conditions. Finally, samples were subjected to mass spectrometry analysis. To rule out the possibility of RNA-independent binding we also analysed other samples where we performed competition assays with polyadenylic acid