Project description:Immune-mediated inflammatory diseases (IMIDs) are typically characterised by relapsing and remitting flares of inflammation. However, the unpredictability of disease flares impedes their study. Addressing this critical knowledge gap, we used the experimental medicine approach of immunomodulatory drug withdrawal in rheumatoid arthritis (RA) remission to synchronise flare processes, allowing characterisation with unprecedented detail. We used single cell RNA sequencing to analyse the diversity and comparative longitudinal changes in paired circulating lymphocyte samples from 12 patients with RA in remission prior to drug cessation (on-drug remission) and after drug cessation (either off drug flare, or drug-free remission) as part of the Biomarkers of Remission in Rheumatoid Arthritis (BioRRA) Study.
Project description:Background: This study addresses whether existing specific transcriptional profiles can improve and support the current status of the definition of ulcerative colitis (UC) remission apart from the existing endoscopic, histologic, and laboratory scoring systems. For that purpose, a well-stratified UC patient population in remission was compared to active UC and control patients and was investigated by applying the next-generation technology RNA-Seq. Methods: Mucosal biopsies from patients in remission (n = 14), patients with active UC (n = 14), and healthy control patients (n = 16) underwent whole-transcriptome RNA-Seq. Principal component analysis, cell deconvolution methods, gene profile enrichment, and pathway enrichment methods were applied to define a specific transcriptional signature of UC in remission. Results: Analyses revealed specific transcriptional signatures for UC in remission with increased expression of genes involved in O-glycosylation (MUC17, MUC3A, MUC5AC, MUC12, SPON1, B3GNT3), ephrin-mediated repulsion of cells (EFNB2E, EFNA3, EPHA10, EPHA1), GAP junction trafficking (TUBA1C, TUBA4A, TUBB4B, GJB3, CLTB), and decreased expression of several toll-like receptors (TLR1, TLR3, TLR5, TLR6). Conclusions: This study reveals specific transcriptional signatures for remission. Partial restoration and improvement of homeostasis in the epithelial mucus layer and revival of immunological functions were observed. A clear role for bacterial gut flora composition can be implied. The results can be useful for the development of treatment strategies for UC in remission and may be useful targets for further investigations aiming to predict the outcome of UC in the future.
Project description:Using a chromatin regulator-focused shRNA library, we found that suppression of sex determining region Y-box 10 (SOX10) in melanoma causes resistance to BRAF and MEK inhibitors. To investigate how SOX10 loss leads to drug resistance, we performed transcriptome sequencing (RNAseq) of both parental A375 (Ctrl. PLKO) and A375-SOX10KD (shSOX10-1, shSOX10-2) cells. To ask directly whether SOX10 is involved indrug resistance in BRAF(V600E) melanoma patients, we isolated RNA from paired biopsies from melanoma patients (pre- and post- treatment) , that had gained BRAF or MEK inhibitor resistance . We performed RNAseq analysis to determine changes in transcriptome upon drug resistance. Investigate genes regulated by SOX10 and differntial gene expression between pre- and post-treatment biopsies. We use short hairpin RNA to suppression SOX10 in A375 cells and cells were harvested with trizol reagent for RNA isolation. For paired biopsies (patient samples) we collected the first biopsy before the initiation of treatment and the second biopsy after drug resistance developed. RNA was isolated from FFPE samples and subjected for RNA sequencing.
Project description:RNA-Seq of spontaneous melanoma in Xiphophorus interspecies hybrids, and paired normal skin samples from the same melanoma-bearing animals were performed.
Project description:We established a model of human melanoma metastasis to identify differentially expressed genes in brain metastasis, compared to cutaneous melanoma from which they were developed. Such genes may control brain metastasis. The identification and characterization of these genes would advance the understanding of the metastatic process and may lead to new diagnostics and therapeutic approach. Brain metastases occur in almost 40% of melanoma patients. The median survival of such patients does not exceed a few months. Very little information is available on mechanisms underlying the progression of melanoma towards brain metastasis. The function, and significance of the various factors involved in melanoma progression must be deciphered using relevant models. Currently, most human melanoma brain metastasis models consist of xenografted cells inoculated into immune-deficient mice mainly by intracarotid or intra-cardiac administration. We generated a reproducible melanoma brain metastasis model, consisting of brain-metastasizing variants and local, sub-dermal variants that originate from the same melanomas thus sharing a common genetic background. The brain metastasizing variants were obtained by intra-cardiac inoculation. One of the brain metastasizing variants when inoculated sub-dermally yielded spontaneous brain dormant micrometastasis. Cells from the spontaneous brain micrometastasis when removed from the brain microenvironment proliferate very well in vitro and generate tumors in the skin being the orthotopic organ site. The brain metastasis and micro-metastasis cells expressed higher levels of ANGPTL4, COX-2, MMP1, MMP2 and PRAME and lower levels of CLDN1, CYR61 and IL-6R than the cutaneous variants. These gene products may be involved in melanoma brain metastasis and may serve as novel brain metastasis biomarkers and targets for therapy. 8 Samples (arrays) were analyzed. We generated pairwise comparisons between cutaneous and brain metastatic variants of the same genetic background, using Partek Genomics Suite, in the three melanoma models. Genes with pM-bM-^IM-$5% and a fold-change difference of M-bM-^IM-%1.25 or <-1.25 were selected.
Project description:Treatment with antibodies targeting immune checkpoints and kinase inhibitors results in long lasting disease remission in a small fraction of melanoma patients. This outstanding patient showed a complete and durable response after Ipilimumab rechallenge. We studied microenvironment composition and the tumor evolution. Through gene expression profiling, we detailed the unique microenvironment characterizing this melanoma patient who experienced a complete response to a rechallange with Ipilimumab
Project description:Patients with Eosinophilic esophagitis (EoE) require long-lasting resolution of inflammation to prevent fibrostenosis and dysphagia. However, the dissociation between symptoms and histologic improvement suggests persistent molecular drivers despite remission. We aimed to characterize persisting molecular alterations in pediatric patients with EoE using tissue proteomics. Esophageal tissue biopsies (n=151) and clinical data were collected prospectively from pediatric patients with EoE (N=34), gastroesophageal reflux disease (GERD; N=10; inflammatory controls) or functional disorders (FD; N=20; non-inflammatory controls). Biospies (n=131) acquired from the diagnostic endoscopy and up to 7 follow-ups were considered for proteome analysis in patients with EoE, while for GERD and FD only biopsies from initial diagnosis were included. Histologically active EoE (15 eosinophils per high power field (hpf)) was diagnosed in 79 biopsies and 52 samples derived from patients with EoE in remission (15 eosinophils per hpf). After microdissection of the epithelium proteins were extracted from the esophageal tissue followed by a liquid chromatography-tandem mass spectrometry. Proteomic analysis identified 3,704 different proteins in total across all samples.
Project description:We established a model of human melanoma metastasis to identify differentially expressed genes in brain metastasis, compared to cutaneous melanoma from which they were developed. Such genes may control brain metastasis. The identification and characterization of these genes would advance the understanding of the metastatic process and may lead to new diagnostics and therapeutic approach. Brain metastases occur in almost 40% of melanoma patients. The median survival of such patients does not exceed a few months. Very little information is available on mechanisms underlying the progression of melanoma towards brain metastasis. The function, and significance of the various factors involved in melanoma progression must be deciphered using relevant models. Currently, most human melanoma brain metastasis models consist of xenografted cells inoculated into immune-deficient mice mainly by intracarotid or intra-cardiac administration. We generated a reproducible melanoma brain metastasis model, consisting of brain-metastasizing variants and local, sub-dermal variants that originate from the same melanomas thus sharing a common genetic background. The brain metastasizing variants were obtained by intra-cardiac inoculation. One of the brain metastasizing variants when inoculated sub-dermally yielded spontaneous brain dormant micrometastasis. Cells from the spontaneous brain micrometastasis when removed from the brain microenvironment proliferate very well in vitro and generate tumors in the skin being the orthotopic organ site. The brain metastasis and micro-metastasis cells expressed higher levels of ANGPTL4, COX-2, MMP1, MMP2 and PRAME and lower levels of CLDN1, CYR61 and IL-6R than the cutaneous variants. These gene products may be involved in melanoma brain metastasis and may serve as novel brain metastasis biomarkers and targets for therapy.
Project description:Multiple sclerosis is a common inflammatory and degenerative disease that causes neurological disability. It affects young adults and its prevalence is higher in women. The most common form is manifested as a series of acute episodes of neurological disability (relapses) followed by a recovery phase (remission). Recently, non-coding RNAs have emerged as new players in transcriptome regulation, and in turn, they could have a significant role in MS pathogenesis. In this context, our aim was to investigate the involvement of microRNAs and snoRNAs in the relapse-remission dynamics of MS in peripheral blood leucocytes, to shed light on the molecular and regulatory mechanisms that underlie this complex process. With this approach, we found that a subset of small non-coding RNAs (sncRNA) is altered in relapse and remission, revealing unexpected opposite changes that are sex dependent. Furthermore, we found that a relapse-related miRNA signature regulated general metabolism processes in leucocytes, and miRNA altered in remission are involved in the regulation of innate immunity. We observed that sncRNA dysregulation is different in relapse and remission leading to differences in transcriptome regulation, and that this process is sex dependent. In conclusion, relapse and remission have a different molecular background in men and women. 24 multiple sclerosis patients with samples both in remission and relapse (2 samples for each patient; 48 blood samples in total) and 24 healthy controls were included in the study, for a total of 72 samples.
Project description:Although remission rates for metastatic melanoma are generally very poor, some patients can survive for prolonged periods following metastasis. We used gene expression profiling, mitotic index (MI), and quantification of tumor infiltrating leukocytes (TILs) and CD3+ cells in metastatic lesions to search for a molecular basis for this observation and to develop improved methods for predicting patient survival. We identified a group of 266 genes associated with postrecurrence survival. Genes positively associated with survival were predominantly immune response related (e.g., ICOS, CD3d, ZAP70, TRAT1, TARP, GZMK, LCK, CD2, CXCL13, CCL19, CCR7, VCAM1) while genes negatively associated with survival were cell proliferation related (e.g., PDE4D, CDK2, GREF1, NUSAP1, SPC24). Identification of genes associated with survival of metastatic melanoma Survival Analysis was performed using Statistical Analysis of Microarrays B D denotes same patient with multiple reccurences