Project description:This SuperSeries is composed of the following subset Series: GSE31525: Spider mite preliminary feeding experiment with mites reared on bean and two Arabidopsis thaliana accessions GSE31527: Developmental stage-specific gene expression in the two-spotted spider mite (Tetranychus urticae) GSE32005: Developmental stage-specific small RNA composition in the two-spotted spider mite (Tetranychus urticae) GSE32009: Transcriptional responses of the two-spotted spider mite (Tetranychus urticae) after transfer to different plant hosts Refer to individual Series
Project description:While performing mitochondrial isolations and recently developed tRNA-seq methods (AlkB treatment and YAMAT-Seq) in plant tissue, we inadvertently sequenced the mitochondrial tRNAs from a common plant pest, the acariform mite Tetranychus urticae, to a high enough coverage to detect all previously annotated T. urticae tRNA regions. The results not only confirm expression, CCA-tailing and post-transcriptional base modification of these highly divergent tRNAs, but also revealed paired sense and antisense expression of multiple T. urticae mitochondrial tRNAs.
Project description:Gene expression differences between MR-VL_FBO, a T. urticae strain highly resistant to fenbutatin oxide, and KOP8, a T. urticae strain susceptible to fenbutatin oxide, were determined.
Project description:Tomato plants are commonly attacked by herbivorous mites, including by generalist Tetranychus urticae and specialists Tetranychus evansi and Aculops lycopersici. Mite feeding induces plant defense responses that reduce mite performance. However, via poorly understood mechanisms, T. evansi and A. lycopersici suppress plant defenses and, consequently, maintain a high performance on tomato. Accordingly, on a shared host, non-adapted T. urticae can be facilitated by either of the specialist mites, likely via the suppression of plant defenses. To better understand defense suppression and indirect plant-mediated interactions between herbivorous mites, we used microarrays to analyze transcriptomic changes in tomato after attack by either a single mite species (T. urticae, T. evansi, A. lycopersici) or two species simultaneously (T. urticae plus T. evansi or T. urticae plus A. lycopersici). Additionally, we assessed mite-induced changes in defense-associated phytohormones using LC-MS/MS. Compared to non-infested controls, jasmonates (JAs) and salicylate (SA) accumulated to higher amounts upon all mite-infestation treatments, but lowest increases were detected after single infestations with defense-suppressors. Strikingly, whereas 8 to 10% of tomato genes was differentially expressed upon single infestations with T. urticae or A. lycopersici, only 0.1% was altered in T. evansi-infested plants. Transcriptome analysis of dual-infested leaves revealed that T. evansi dampened T. urticae-triggered host responses on a genome-wide scale, while A. lycopersici primarily suppressed T. urticae-induced JA defenses. Our results provide valuable new insights into the mechanisms underlying host defense suppression and the plant-mediated facilitation of competing herbivores.
Project description:Macrocylic lactones, milbemectin and abamectin, are compounds that are frequently used for the control of the two-spotted spider mite Tetranychus urticae. The development of abamectin resistance in this major pest has become an increasing problem worldwide, potentially compromising the use of milbemectin. In this study, gene expression profile differences between abamectin/milbemectin resistant T. urticae populations (ES1, IT2 and UK6) and a susceptible T. urticae population (RO1 and IT3) were compared using Illumina RNAseq.
Project description:Investigating essential physiological processes in diapausing mites by analyzing genome wide gene expression changes using custom-built microarray. We investigated the molecular biology of facultative reproductive diapause in the chelicerate Tetranychus urticae (Acari: Tetranychidae) by analyzing genome-wide gene expression differences in diapausing and non diapausing T. urticae, using an Agilent custom-built two color gene expression microarray. Analysis of this dataset showed that a remarkable number, 11% of the total number of predicted T. urticae genes, were differentially expressed. Gene Ontology analysis revealed that many metabolic pathways were affected in diapausing females. Genes related to digestion and detoxification, cryo-protection, carotenoid synthesis and the organization of the cytoskeleton were profoundly influenced by the state of diapause. We also further confirmed the importance of horizontally transferred carotenoid synthesis genes in diapause and different color morphs of T. urticae. We made one comparison: diapausing mites (DIA) vs non-diapausing mites (NON-DIA), in 4 replicates. Both types of mites belonged to the T. urticae LS-VL strain. In this strain, approximately 30% of mites enter diapause under the experimental conditions applied. Hence, we were able to sample RNA of mites with similar genetic background that were reared under identical environmental conditions. The labeled cRNA samples were pooled and hybdrized to a custom Sureprint genome wide G3 Gene Expression 8x60K microarray. Data was normalized by Agilent Feature Extraction software (using protocol GE2_107_SEP09). Genespring software (Agilent technologies) was used for the statistical analysis of the data.