Project description:We performed single-nucleus RNA sequencing (snRNA-seq) of skin and blood of persons presenting with naturally acquired, attached Ixodes scapularis ticks.
Project description:Ixodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, the gene expression profile of cutaneous bite-site lesions created by uninfected ticks were analyzed at 1, 3, 6, and 12 hours after Ixodes scapularis nymphal tick attachment to discover host pathways or responses potentially important in tick-borne viral establishment.
Project description:Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted to vertebrate hosts by Ixodes ticks. As it moves from tick to host, B. burgdorferi must adapt to survive in a vastly different environment. During the tick bloodmeal, which lasts several days, B. burgdorferi is primed for mammalian infection, growing increasingly virulent as it senses cues from its surroundings in the tick. This conditioning is dependent on key transcriptional regulators; however, the downstream transcriptional changes occurring inside of the tick that promote B. burgdorferi transmission and infection are poorly understood due to technical difficulties in sequencing the B. burgdorferi transcriptome from inside of ticks. We developed a protocol to enrich and sequence B. burgdorferi from inside the tick, and we measured global transcriptional changes occurring in feeding ticks. We identified 192 genes that change expression twofold over the course of the tick bloodmeal, which were predominantly located on the plasmids of the genome. The majority of the upregulated genes encode proteins found at the cell envelope or proteins of unknown function, including 45 upregulated genes encoding outer surface lipoproteins. These genes that increase during feeding are candidates for future functional studies, which can help identify new targets for methods that aim to control the spread of Lyme disease.
Project description:Subolesin is an evolutionary conserved protein that was recently discovered in Ixodes scapularis as a tick protective antigen and has a role in tick blood digestion, reproduction and development. In other organisms, subolesin orthologs may be involved in the control of developmental processes. Because of the profound effect of subolesin knockdown in ticks and other organisms, we hypothesized that subolesin has a role in gene expression, thus affecting multiple cellular processes. The objective of this study was to provide support for the role of subolesin in gene expression. Keywords: time course Total RNA was prepared and pooled from subolesin dsRNA- and saline-injected ticks at 6 and 9 dpi (5 and 8 days of feeding).
Project description:To determine whether the influences of Ixodes scapularis protein disulfide isomerase A6 (IsPDIA6) on Borrelia burgdorferi colonization is the result of physiological responses, we performed RNA-sequencing (RNA-seq) to compare the transcriptomes of control (GFP) and IsPDIA6-silenced ticks.
Project description:Ixodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, the gene expression profile of cutaneous bite-site lesions created by uninfected ticks were analyzed at 1, 3, 6, and 12 hours after Ixodes scapularis nymphal tick attachment to discover host pathways or responses potentially important in tick-borne viral establishment. Four milimeter ear biopsies from BALB/cJ mice infested with Ixodes scapularis nymphs were assayed using Affymetrix genechip 430A 2.0 arrays at 1, 3, 6, and 12 hours after infestation during a primary exposure. 3 mice were measured at each time point. Controls were 3 similarly housed but tick-free mice.