Project description:During the COVID-19 pandemic, thousands of pregnant women have been infected with SARS-CoV-2 worldwide. The short- and long-term implications of maternal SARS-CoV-2 infection on fetal and childhood well-being are unknown. To characterize the fetal immune response to maternal SARS-CoV-2 infection, we performed single-cell RNA sequencing and T cell receptor sequencing on cord blood mononuclear cells from infants born to mothers infected with SARS-CoV-2 in the third trimester. We identified widespread gene expression changes in cord blood leukocytes, including upregulation of interferon-stimulated genes (ISG) and of HLA genes in CD14+ monocytes; decreased activation of CD16+ monocytes; activation of plasmacytoid dendritic cells; and activation and exhaustion of NK cells and T CD8+ cells in the cord blood of infants born to SARS-CoV-2+ mothers. Lastly, we observed fetal TCR repertoire clonal expansion in cord blood T cells from pregnancies complicated by maternal SARS-CoV-2 infection. Our results suggest that even in the absence of vertical transmission, SARS-CoV-2 maternal infection in the third trimester modulates the fetal immune system.
Project description:For the assessment of host response dynamics to SARS-CoV and SARS-CoV-2 infections in human airway epithelial cells at ambient temperature corresponding to the upper or lower respiratory tract. We performed a temporal transcriptome analysis on human airway epithelial cell (hAEC) cultures infected with SARS-CoV and SARS-CoV-2, as well as uninfected hAEC cultures, incubated either at 33°C or 37°C. hAEC cultures were harvested at 24, 48 72, 96 hpi and processed for Bulk RNA Barcoding and sequencing (BRB-seq), which allows a rapid and sensitive genome-wide transcriptomic analysis in a highly multiplexed manner. Transcriptome data was obtained from a total of 7 biological donors for pairwise comparisons of SARS-CoV or SARS-CoV-2 virus-infected to unexposed hAEC cultures at respective time points and temperatures.
Project description:The SARS-CoV-2 virus is continuously evolving, with appearance of new variants characterized by multiple genomic mutations, some of which can affect functional properties, including infectivity, interactions with host immunity, and disease severity. The rapid spread of new SARS-CoV-2 variants has highlighted the urgency to trace the virus evolution, to help limit its diffusion, and to assess effectiveness of containment strategies. We propose here a PCR-based rapid, sensitive and low-cost allelic discrimination assay panel for the identification of SARS-CoV-2 genotypes, useful for detection in different sample types, such as nasopharyngeal swabs and wastewater. The tests carried out demonstrate that this in-house assay, whose results were confirmed by SARS-CoV-2 whole-genome sequencing, can detect variations in up to 10 viral genome positions at once and is specific and highly sensitive for identification of all tested SARS-CoV-2 clades, even in the case of samples very diluted and of poor quality, particularly difficult to analyze.
Project description:To search for host factors regulating SARS-COV-2 infection, we performed a genome-wide loss-of-function CRISPR/Cas9 screen in haploid human ESCs. The regulators were identified by the quantification of enrichment of their mutant clones within a pooled loss-of-function library upon SARS-COV-2 infection.
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).