Project description:To identify novel microRNAs that are associated with drought tolerance in two different cowpea genotypes, we generated small RNA sequences from adult cowpea plants under control and dought stress treatments. Over 79 million raw reads were generated and numerous novel microRNAs are identified, including some associated with drought tolerance. Sequencing of small RNAs in two cowpea genotypes under control and drought stress conditions.
Project description:To identify novel microRNAs that are associated with drought tolerance in two different cowpea genotypes, we generated small RNA sequences from adult cowpea plants under control and dought stress treatments. Over 79 million raw reads were generated and numerous novel microRNAs are identified, including some associated with drought tolerance.
Project description:Background: Cowpea (Vigna unguiculata L. Walp) is an important food and fodder legume of the semiarid tropics and subtropics worldwide, especially in sub-Saharan Africa. High density genetic linkage maps are needed for marker assisted breeding but are not available for cowpea. A single feature polymorphism (SFP) is a microarray-based marker which can be used for high throughput genotyping and high density mapping. Results: Here we report detection and validation of SFPs in cowpea using a readily available soybean (Glycine max) genome array. Robustified projection pursuit (RPP) was used for statistical analysis using RNA as a surrogate for DNA. Using a 15% outlying score cut-off, 1058 potential SFPs were enumerated between two parents of a recombinant inbred line (RIL) population segregating for several important traits including drought tolerance, Fusarium and brown blotch resistance, grain size and photoperiod sensitivity. Sequencing of 25 putative polymorphism-containing amplicons yielded a SFP probe set validation rate of 68%. Conclusions: We conclude that the Affymetrix soybean genome array is a satisfactory platform for identification of some 1000's of SFPs for cowpea. This study provides an example of extension of genomic resources from a well supported species to an orphan crop. Presumably, other legume systems are similarly tractable to SFP marker development using existing legume array resources. Keywords: Polymorphism discovery, array based genotyping
Project description:In this present work, photosynthetic and biochemical parameters in conjunction with gel-free/label-free proteomic analysis were assessed in a resistant cowpea genotype challenged with CPSMV and compared with the corresponding data of the mock-inoculated control as an attempt to find out some clues to the molecular mechanims by which this cowpea genotype is resistant to CPSMV.
Project description:In this study we have looked at the transcriptome profile of both incompatible and compatible cowpea-RKN interaction for two different time points using the Affymetrix soybean GeneChip. This is the first study of this kind in cowpea-RKN interaction. This study provides a broad insight into the Rk-mediated resistance in cowpea and creates an excellent dataset of potential candidate genes involved in both nematode resistance and parasitism, which can be further tested for their role in this biological process using functional genomics approaches. our results have shown that the root-knot nematode resistant pathway is still partially suppressed at 9 days post inoculation in resistant cowpea root. There is indication that subtle variation of ROS concentration, induction of toxins and other defense related genes play a role in this unique resistance mechanism. Further functional analysis of these differentially expressed genes will help us to understand this intriguing plant-nematode interaction in a more precise manner.
Project description:Background:; Cowpea (Vigna unguiculata L. Walp) is an important food and fodder legume of the semiarid tropics and subtropics worldwide, especially in sub-Saharan Africa. High density genetic linkage maps are needed for marker assisted breeding but are not available for cowpea. A single feature polymorphism (SFP) is a microarray-based marker which can be used for high throughput genotyping and high density mapping. Results:; Here we report detection and validation of SFPs in cowpea using a readily available soybean (Glycine max) genome array. Robustified projection pursuit (RPP) was used for statistical analysis using RNA as a surrogate for DNA. Using a 15% outlying score cut-off, 1058 potential SFPs were enumerated between two parents of a recombinant inbred line (RIL) population segregating for several important traits including drought tolerance, Fusarium and brown blotch resistance, grain size and photoperiod sensitivity. Sequencing of 25 putative polymorphism-containing amplicons yielded a SFP probe set validation rate of 68%. Conclusions:; We conclude that the Affymetrix soybean genome array is a satisfactory platform for identification of some 1000âs of SFPs for cowpea. This study provides an example of extension of genomic resources from a well supported species to an orphan crop. Presumably, other legume systems are similarly tractable to SFP marker development using existing legume array resources. SUBMITTER_CITATION: Detection and validation of single feature polymorphisms in cowpea (Vigna unguiculata L. Walp) using a soybean genome array Sayan Das, Prasanna R. Bhat, Chinta Sudhakar, Jeffrey D. Ehlers, Steve Wanamaker, Philip A. Roberts, Xinping Cui, Timothy J. Close BMC Genomics 2008, 9:107 Experiment Overall Design: Expression data were generated by hybridizing cowpea cRNA to the soybean genome array. A statistical method called robustified projection pursuit (RPP) was used for Single Feature Polymorphism(SFP) analysis. Only the values from the PM probes were utilized. The use of RNA as a surrogate for genomic DNA eliminated interference from highly repetitive DNA as a technical impediment to SFP detection. An important aspect of the RPP method is that it first utilizes a probe set level analysis to identify SFP-containing probe sets and then chooses individual probes from within each SFP-containing probe set. The net result is the identification of probes that directly overlay polymorphic sequences. Experiment Overall Design: Separate comparisons were made between two genotypes (with two replicates each) for unstressed and drought stressed treatments, resulting in two SFP lists. In the context of SFPs, there is no necessity to have separate stress and control lists; in fact it would be simpler and less costly to have only one SFP list from highly complex RNA made by blending stressed and unstressed RNA. In our case, two separate lists were available as a consequence of another study not described here which compared gene expression patterns in stressed and control plants (data not shown). At 15% outlying score cut-off, we detected 488 SFP probes in stressed and 661 SFP probes in unstressed treatments. The union of these two lists contained 1058 SFP probes and the intersection contained 91. A total of 37 primer pairs targeting 37 putative SFP probe sets were initially tested, of which 25 yielded single amplicons of the expected sizes from both parents. These 25 amplicons targeted 14 probe sets selected from the intersection of the two SFP probe set lists and 11 from the remaining SFP probe sets. 9 of the 14 SFP probe sets (64%) from the intersection list were validated at the DNA sequence level and 8 of the other 11 (73%) were validated.
Project description:Viruses are important plant pathogens that threaten diverse crops worldwide. Diseases caused by Cowpea severe mosaic virus (CPSMV) have drawn attention because of the serious damages they cause to economically important crops including cowpea. This work was undertaken to quantify and identify the responsive proteins of a susceptible cowpea genotype infected with CPSMV, in comparison with mock-inoculated controls, using label-free quantitative proteomics and databanks, aiming at providing insights on the molecular basis of this compatible interaction. Cowpea leaves were mock-inoculated or inoculated with CPSMV and 2 and 6 days later proteins were extracted and analyzed. More than 3000 proteins were identified and 75 and 55 of them differentially accumulated in response to CPSMV, at 2 and 6 DAI, respectively. At 2 DAI, 76% of the proteins were down-represented and 24% upaccumulated. However, at 6 DAI, 100% of the identified proteins were up-accumulated. Thus CPSMV transiently suppresses the synthesis of proteins involved particularly in the redox homeostasis, protein synthesis, defense, stress, RNA/DNA metabolism, signaling, and other functions, allowing viral invasion and spread in cowpea tissues. It is expected that identification of differentially accumulated proteins and their interactions advance our understanding on how a susceptible cowpea genotype responds to CPSMV infection.