Project description:microRNA profiling data includes biological replicates of primary monocytes and macrophages from three human donors Dye swap hybridization arrays were performed for total RNA isolated from fresh monocytes and 7-day monocyte-derived macrophages from each of three human donors
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:The objective of the study was to compare the wound macs with corresponding macs derived from peripheral blood monocytes (MDMs). Wound site macrophage (wound macs were isolated from human subjects with chronic wounds. Matching blood monocyte derived macrophages (MDM) were obtained from same subjects. Transcriptome profiling (GeneChip, Affymetrix) was performed.The expression values of genes were normalized using global scaling approach. Blood monocyte derived macrophages or human wound macrophages were isolated and transcriptome analysis was performed using affymetrix gene chip analysis. Group -1 MDMs (n=3) Mac-1 Mac-2 Mac-3 Group -2 Wound macs (n=3) Wmac-1 Wmac-2 Wmac-3
Project description:As supplies of monocytes, macrophages and dendritic cells from human sources can be scarce or prone to donor variation we established an efficient method to generate induced pluripotent stem cell derived monocytes that in turn could be differentiated into both macrophages and dendritic cells. We used RNA sequencing to profile these from multiple differentiation runs (n=3) and multiple monocyte harvests (n=3-4) and compared them to their blood derived counterparts, blood derived monocyte, monocyte derived macrophages and moncyte derived dendritic cells (from 3 donors).
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.