Project description:Peripheral Artery Disease is caused by the restriction or occlusion of arteries supplying the leg. Better understanding of the molecular mechanisms underpinning tissue response to acute and chronic ischemia is urgently needed to improve therapeutic options. The aim of this study is understanding miR-210 regulation and role in a mouse model of hindlimb ischemia. To investigate miR-210 function, mice were injected with a miR-210 complementary LNA-oligonucleotide (anti-miR-210). Then, the left femoral artery was dissected in order to induce unilateral hindlimb ischemia. Mice were sacrified 3 days later and gene expression profiles of gastrocnemius muscles were obatained.
Project description:Peripheral Artery Disease is caused by the restriction or occlusion of arteries supplying the leg. Better understanding of the molecular mechanisms underpinning tissue response to acute and chronic ischemia is urgently needed to improve therapeutic options. The aim of this study is understanding miR-210 regulation and role in a mouse model of hindlimb ischemia.
Project description:Fine needle stimulation also known as acupuncture is a traditional Chinese medical practice which causes relief of pain. We demonstrated that it caused neovascularization and enhanced recovery of blood perfusion in a ischemic portion of skeletal muscle in rats with hindlimb ischemia. Therefore we evaluated the effect of fine needle stimulation on skeletal muscle at gene expression level Experiment Overall Design: With 0.14mm diameter stainless steel needle, a hundred pricks were applied in a 100 square mili-meter region on addductor portion of the left rat hindlimb. Right hindlimb was left intact as control. 24 hrs after fine needle stimulation, skeletal muscle sample was resected from adductor muscle of fine needle stimulated left hindlimb and non-stimulated right hindlimbs, respectively. Then gene expression analysis with microarray was conducted on each skelatal muscle sample.
Project description:Skeletal muscle is a highly adaptive tissue that changes with many physiological stimuli and is composed of many cell types. Upon muscle injury, the concerted action of these cells is required to proceed through the process of inflammation, extracellular matrix remodeling, and restoration of function. To uncover novel genes and molecular pathways important for skeletal muscle remodeling and regeneration, we used a mouse hindlimb unloading and reloading protocol, and performed transcriptomics analysis. This study focuses on the microprotein Mustn1 (Musculoskeletal embryonic nuclear protein 1, also known as Mustang), whose gene expression is increased in muscle at the onset of hindlimb reloading, exercise, and injury. We generated a whole-body Mustn1 knockout mouse model and performed proteomics analysis of muscle and aorta.
Project description:We show that Mustn1 (Musculoskeletal embryonic nuclear protein 1, also known as Mustang) is highly expressed in skeletal muscle during the early stages of hindlimb reloading. Mustn1 expression is transiently elevated in mouse and human skeletal muscle in response to intense exercise, resistance exercise, or injury. We find that Mustn1 expression is highest in smooth muscle-rich tissues, followed by skeletal muscle fibers. Muscle from heterozygous Mustn1-deficient mice exhibit differences in gene expression related to the extracellular matrix and cell adhesion, compared to wild-type littermates. Mustn1-deficient mice have normal muscle and aorta function and whole-body glucose metabolism. Loss of Mustn1 in vascular smooth muscle cells does not affect their proliferative or migratory functions. We show that Mustn1 can be secreted from smooth muscle cells, and that it is present in arterioles of the muscle microvasculature and in muscle interstitial fluid, in particular during the hindlimb reloading phase. Proteomics analysis of muscle from Mustn1-deficient mice confirms differences in extracellular matrix composition, and female mice display higher collagen content after chemically induced muscle injury compared to wild-type littermates.
Project description:To investigate the molecular mechanisms governing the transition of skeletal muscle from atrophy to compensatory regeneration and hypertrophy, we employed a mouse model involving hindlimb unloading and subsequent reloading, conducting a comprehensive analysis of global gene expression using RNA-sequencing (RNA-seq). Gastrocnemius muscle samples were obtained from three groups: control mice, mice subjected to 10 days of hindlimb unloading-induced muscle atrophy, and mice reintroduced to normal cage activity for 1 day following the unloading period (reloading).
Project description:Fine needle stimulation also known as acupuncture is a traditional Chinese medical practice which causes relief of pain. We demonstrated that it caused neovascularization and enhanced recovery of blood perfusion in a ischemic portion of skeletal muscle in rats with hindlimb ischemia. Therefore we evaluated the effect of fine needle stimulation on skeletal muscle at gene expression level Keywords: Evaluation of physical stimulation
Project description:Stimulation of the mouse hindlimb via the sciatic nerve was used to induce contractions for 4 hours to investigate acute muscle gene activation in a model of muscle phenotype conversion. Initial force production (1.6 + 0.1 g/g body weight) declined 45% within 10 min and was maintained for the remainder of the experiment. Force returned to initial levels upon completion of the study. An immediate-early growth response was present in the EDL (FOS, JUN, ATF3, MAFK) with a similar but attenuated pattern in the soleus. Transcript profiles showed decreased fast fiber specific mRNA (myosin heavy chains 2A, 2B; troponins T3, I; -tropomyosin, m-creatine kinase) and increased slow transcripts (myosin heavy chain slow/1, troponin C, tropomyosin 3) in the EDL. Histological analysis of the EDL revealed glycogen depletion without inflammatory cell infiltration or myofiber damage in stimulated vs. control muscles. Several fiber type specific transcription factors (EYA1, TEAD1, NFATc1 and c4, PPARG, PPARGC1 and β, BHLHB2) increased in the EDL along with transcription factors characteristic of embryogenesis (KLF4, SOX17, TCF15, PKNOX1, ELAV). No established in vivo satellite cell markers or the genes activated during our parallel studies of satellite cell proliferation in vitro (CYCLINS A2, B2, C, E1, MyoD) increased in the stimulated muscles. These data indicated that onset of fast to slow phenotype conversion occurred in the EDL within 4 hours of stimulation without satellite cell recruitment or muscle injury but was driven by phenotype specific transcription factors from resident fiber myonuclei including activation of nascent developmental transcriptional programs. Adult male Swiss Webster mice (30-35 g) were anesthetized, a bipolar electrode was implanted adjacent to the sciatic nerve and the hindlimb immobilized. The voltage-force relation was determined to establish supramaximal stimulation conditions and the length-tension relation was determined to set the resting length for maximum twitch tension. Contractions were induced by sciatic nerve stimulation (0.5 msec duration, 2-5 volts). The muscles were allowed to rest 15 minutes for full metabolic recovery at physiologic temperatures. Supramaximal stimulation was applied at a rate of 10 Hz for 4 hours. At the end of each experiment the soleus muscles were carefully dissected and flash frozen in liquid nitrogen for analysis of mRNA expression via microarray analysis. The contralateral, unstimulated Soleus provided a genetically matched, paired control for each specimen.