Project description:Forced expression of Bmi1 accelerated the self-renewal of hepatic stem/progenitor cells and eventually induced their transformation in an in vivo transplant model. The Ink4a/Arf locus, which encodes a cyclin-dependent kinase inhibitor, p16Ink4a, and a tumor suppressor, p19Arf, is a pivotal target of Bmi1. Therefore, it would be of importance to understand the contribution of the Ink4a/Arf locus to Bmi1 oncogenic functions in cancer and search for as-yet-unknown Bmi1 target genes other than Ink4a/Arf. We used microarrays to explore novel candidate downstream targets for Bmi1 in hepatic stem/progenitor cells Experiment Overall Design: Purified Dlk-positive hepatoblasts at day 28 of culture were subjected to RNA extraction and hybridization on Affymetrix microarrays. Data were obtained for quadrant samples from four independent experiments.
Project description:Forced expression of Bmi1 accelerated the self-renewal of hepatic stem/progenitor cells and eventually induced their transformation in an in vivo transplant model. The Ink4a/Arf locus, which encodes a cyclin-dependent kinase inhibitor, p16Ink4a, and a tumor suppressor, p19Arf, is a pivotal target of Bmi1. Therefore, it would be of importance to understand the contribution of the Ink4a/Arf locus to Bmi1 oncogenic functions in cancer and search for as-yet-unknown Bmi1 target genes other than Ink4a/Arf. We used microarrays to explore novel candidate downstream targets for Bmi1 in hepatic stem/progenitor cells
Project description:Bmi1 is a component of polycomb repressive complex 1 and its role in the inheritance of the stemness of adult somatic stem cells has been well characterized. Bmi1 maintains the self-renewal capacity of adult stem cells, at least partially, by repressing the Ink4a/Arf locus that encodes a cyclin-dependent kinase inhibitor, p16Ink4a, and a tumor suppressor, p19Arf 14. Deletion of both Ink4a and Arf in Bmi1-deficient mice substantially restored the defective self-renewal capacity of HSCs and neural stem cells. Purified KSL cells from BM of wild-type, Bmi1-/-, Ink4a-/-Arf-/-, and Bmi1-/- Ink4a-/-Arf-/- mice were subjected to RNA extraction and hybridization on Affymetrix microarrays.
Project description:Bmi1 is a component of polycomb repressive complex 1 and its role in the inheritance of the stemness of adult somatic stem cells has been well characterized. Bmi1 maintains the self-renewal capacity of adult stem cells, at least partially, by repressing the Ink4a/Arf locus that encodes a cyclin-dependent kinase inhibitor, p16Ink4a, and a tumor suppressor, p19Arf 14. Deletion of both Ink4a and Arf in Bmi1-deficient mice substantially restored the defective self-renewal capacity of HSCs and neural stem cells. Purified CMP from BM of recipient mice repopulated with wild-type, Ink4a-/-Arf-/-, and Bmi1-/- Ink4a-/-Arf-/- BM cells were subjected to RNA extraction and hybridization on Affymetrix microarrays.
Project description:Comparison of gene expression of Ink4a/Arf-/- vs Bmi1-/-;Ink4a/Arf-/- subventricular zone (SVZ) derived mouse neural stem cells (NSC) on Laminin (LM) and Fibronectin (FN) substrates.
Project description:Bmi1 is a component of polycomb repressive complex 1 and its role in the inheritance of the stemness of adult somatic stem cells has been well characterized. Bmi1 maintains the self-renewal capacity of adult stem cells, at least partially, by repressing the Ink4a/Arf locus that encodes a cyclin-dependent kinase inhibitor, p16Ink4a, and a tumor suppressor, p19Arf 14. Deletion of both Ink4a and Arf in Bmi1-deficient mice substantially restored the defective self-renewal capacity of HSCs and neural stem cells.
Project description:Bmi1 is a component of polycomb repressive complex 1 and its role in the inheritance of the stemness of adult somatic stem cells has been well characterized. Bmi1 maintains the self-renewal capacity of adult stem cells, at least partially, by repressing the Ink4a/Arf locus that encodes a cyclin-dependent kinase inhibitor, p16Ink4a, and a tumor suppressor, p19Arf 14. Deletion of both Ink4a and Arf in Bmi1-deficient mice substantially restored the defective self-renewal capacity of HSCs and neural stem cells.
Project description:This experiment is aimed at determining the genetic signature of dental stem cell colonies grown in vitro and how that signature changes when Bmi1 activity is removed. Another question to be answered by the experiment is whether Bmi1 has alternate targets besides Ink4a/Arf.