Project description:This SuperSeries is composed of the following subset Series: GSE24381: Inhibition of BCL6-dependent gene expression in Philadelphia chromosome positive acute lymphoblastic leukemia GSE24404: Recruitment of BCL6 to target genes in Philadelphia chromosome positive acute lymphoblastic leukemia Refer to individual Series
Project description:The Philadelphia chromosome (Ph) encodes the oncogenic BCR-ABL1 tyrosine kinase, which defines a subset of acute lymphoblastic leukemia (ALL) with a particularly unfavorable prognosis. In this study, the tyrosine kinase inhibitor imatinib was used for pharmacological inhibition of BCR-ABL1. Gene expression profiles of Ph+ ALL cell lines were analyzed in response to imatinib treatment.
Project description:The Philadelphia chromosome (Ph) encodes the oncogenic BCR-ABL1 tyrosine kinase, which defines a subset of acute lymphoblastic leukemia (ALL) with a particularly unfavorable prognosis. In this study, the tyrosine kinase inhibitor imatinib was used for pharmacological inhibition of BCR-ABL1. Gene expression profiles of Ph+ ALL cell lines were analyzed in response to imatinib treatment. Four Ph+ ALL cell lines (BV-173, NALM-1, SUP-B15, and TOM1) were either treated with 10µM STI571 (Imatinib) for 16 hours or cultured in absence of STI571.
Project description:The Philadelphia chromosome (Ph) encodes the oncogenic BCR-ABL1 tyrosine kinase, which defines a subset of acute lymphoblastic leukemia (ALL) with a particularly unfavorable prognosis. Tyrosine kinase inhibitors (TKI) are widely used to treat patients with leukemia driven by BCR-ABL1 and other oncogenic tyrosine kinases. In response to TKI-treatment, BCR-ABL1 ALL cells upregulate BCL6 protein levels by ~90-fold, i.e. to similar levels as in diffuse large B cell lymphoma (DLBCL) with BCL6 translocations. In this study, we analyzed the gene expression changes after treatment with Imatinib or Imatinib + RI-BPI.
Project description:The Philadelphia chromosome (Ph) encodes the oncogenic BCR-ABL1 tyrosine kinase, which defines a subset of acute lymphoblastic leukemia (ALL) with a particularly unfavorable prognosis. Tyrosine kinase inhibitors (TKI) are widely used to treat patients with leukemia driven by BCR-ABL1 and other oncogenic tyrosine kinases. In response to TKI-treatment, BCR-ABL1 ALL cells upregulate BCL6 protein levels by ~90-fold, i.e. to similar levels as in diffuse large B cell lymphoma (DLBCL) with BCL6 translocations. In this study, we analyzed the gene expression changes after treatment with Imatinib or Imatinib + RI-BPI. Three Ph+ ALL cell lines (BV-173, SUP-B15 and TOM-1) were treated in the presence or absence of 10 μM STI571 (Imatinib) or in the presence of both 10 μM STI571 and 20 μM RI-BPI for 24 hours.
Project description:Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages
Project description:BCR-ABL positive acute lymphoblastic leukemia (ALL) cell survival is strongly dependent on the IRE1α-XBP1 branch of the Unfolded Protein Response (UPR). In the study at hand, we have focused on exploring the link between BCR-ABL1 and IRE1α to better understand whether a simultaneous pharmacological inhibition of both pathways could represent a beneficial therapeutic strategy in Philadelphia positive (Ph+) ALL. Therefore, the effect on the phosphoproteome of two inhibitors (MKC-8866 and Nilotinib) as well as a combination of both compounds was analysed in this study.